TO: CONSULTING ENGINEERS

SUBJECT: FIELD TEST PROCEDURES FOR MIXER PERFORMANCE AND CONCRETE UNIFORMITY TESTS

I. SCOPE

These methods describe the procedures for obtaining and testing representative samples of fresh concrete in the field to determine the consistency and mixer efficiency of stationary mixers at different mixing time periods.

The concrete produced during the mixing time investigation and not used in the test program may be incorporated in the project provided it conforms to the Standard Specifications for Construction of Airports.

A maximum of two mixing times shall be considered by the Department.

The contractor shall provide all of the necessary equipment and personnel to perform the tests and the Department will observe the testing.

II. APPARATUS REQUIRED

a. Three (3) air meters conforming to the requirements of ASTM C231 or ASTM C173.

b. Three (3) slump cone kits conforming to ASTM C143.

c. One (1) No. 4 sieve having a minimum screen area of 2 sq. ft. The sieve shall conform to the requirements of AASHTO M92.

d. One (1) platform scale graduated in tenths of a pound having a capacity sufficient to perform tests herein after specified.

e. One (1) hydraulic or mechanical testing machine conforming to the requirements of the specified testing method for the project (ASTM C39 or ASTM C78).
f.

Flexural strength specimen forms as required. The forms shall be nominally 6x6x30 inch. Means shall be provided for securing the base plate firmly to the mold. The inside surfaces of the mold shall be smooth and free from holes, indentations, or ridges. The sides, bottom, and ends shall be at right angles and shall be straight and true so that the specimens will not be warped. Maximum variation from the nominal cross-section shall not exceed 1/8 inch. The assembled mold and base plate shall be lightly coated with mineral oil or other approved form release oil before use. Compressive strength specimens shall be 6x12 inch and prepared in accordance with ASTM C31.

g.

Sufficient water tanks for curing specimens as required by ASTM C31.

h.

Small tools such as shovels, scoops, buckets, etc., and water shall be furnished, as required.

III. MIXER

The mixer for which the mixing time is to be evaluated shall conform to the applicable sections of the Standard Specifications for Construction of Airports.

IV. MIXING TIME REQUIREMENTS

The minimum mixing time to be evaluated shall be specified in the Standard Specifications for Construction of Airports.

V. PROCEDURE

A minimum of ten (10) batches per drum shall be tested and evaluated for each original reduced mixing time request. Check tests shall consist of three (3) batches.

If the request is for a new, twin drum mixer, ten (10) batches shall be tested for the first drum and three (3) for the second drum.

Check tests are required if the mixer is moved, major maintenance performed, or if the source or type of aggregate has changed. A minimum frequency of check tests shall be one (1) per year.

a. Mixing Time

The mixing time and batch size to be evaluated shall be proposed by the contractor. The mixing time shall begin when all solid materials are in the mixing drum. The mixer timer shall register or indicate accurately the mixing time and a tolerance of two (2) seconds will be permitted.

If approved by the Engineer, minor adjustments in admixture dosage and water content will be allowed to account for weather conditions, provided that the maximum w/c ratio is not exceeded.
b. Sampling

At the conclusion of the mixing cycle, the mixer shall be discharged and appropriate samples obtained from the first, middle, and last third portions of the batch. Any appropriate method may be used, provided the samples are representative of the respective portions and not the very ends of the batch.

As an alternative, the mixer may be stopped, and the samples removed by any suitable means at equally spaced points from the front to the back of the drum.

c. Testing.

1. Each third portion of the batch shall be tested simultaneously. The Contractor shall provide sufficient personnel to meet this requirement. The Contractor personnel performing the testing shall be Level I PCC Technicians or Concrete Testers. However, a Level I PCC Technician shall be provided to supervise the Concrete Tester.

2. From each third portion of the batch the mass (weight) of the concrete in one air meter measuring bowl shall be determined.

3. The air content of each third portion of the batch shall be determined according to ASTM C231 or ASTM C173. The air content shall be the arithmetic average of two (2) tests from each third portion of the batch.

4. The slump of each third portion of the batch shall be determined according to ASTM C143. The slump shall be the arithmetic average of two (2) tests from each third portion of the batch.

5. Flexural strength specimen(s) (two (2) breaks required) or two (2) compressive strength specimens shall be prepared from each third portion of the batch according to ASTM C31. Flexural strength specimen(s) (two (2) breaks required) shall be tested according to ASTM C78 at seven (7) days of age. Compressive strength specimens shall be tested according to ASTM C39 at seven (7) days of age.

6. The contents from the weighed air meter measuring bowl shall be washed over a No. 4 sieve. Shake as much water as possible from the material retained on the sieve and then weigh the material. The coarse aggregate content (portion of mass (weight) of sample retained on a No. 4 sieve), expressed as a percent, shall be calculated.
VI. CONCRETE UNIFORMITY REQUIREMENTS

a. Test results from each third portion of the batch shall be compared to one another according to Table 1. Each batch shall be evaluated individually.

b. Mixer performance tests consisting of ten (10) batches: If more than seven (7) tests out of the total or more than three (3) in any one criteria are not in compliance with the uniformity requirements (air content, slump, coarse aggregate content, and strength), a reduced mixing time will not be granted.

c. Mixer performance tests consisting of three (3) batches: If more than three (3) tests out of the total are not in compliance with the uniformity requirements, a full ten (10) batch investigation shall be required.

Table 1. Requirements for Uniformity of Concrete

<table>
<thead>
<tr>
<th>Test</th>
<th>Requirement (Note 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Content, percent by volume of concrete</td>
<td>1.0 (Note 2)</td>
</tr>
<tr>
<td>Slump, inch</td>
<td>1.0 (Note 3)</td>
</tr>
<tr>
<td>Coarse aggregate content, portion by weight of each sample retained on the No. 4 sieve, percent</td>
<td>6.0</td>
</tr>
<tr>
<td>Average flexural or compressive strength at 7 days for each sample based on average strength of all comparative test specimens, percent</td>
<td>7.5 (Note 4)</td>
</tr>
</tbody>
</table>

Note 1. Expressed as maximum permissible difference in results of tests of samples taken from three locations in the concrete batch.
Note 2. The average air content sample shall be the arithmetic average of two (2) tests.
Note 3. The average slump sample shall be the arithmetic average of two (2) tests.
Note 4. The average flexural strength of each sample shall be the arithmetic average of two (2) beam breaks. The average compressive strength of each sample shall be the arithmetic average of two (2) cylinder breaks.

Steven J. Long, P.E.
Acting Chief Engineer

Supersedes Policy Memorandum 95-1 dated January 1, 1995