HIGH LOAD MULTI-ROTATIONAL BEARINGS
Effective: October 13, 1988
Revised: October 23, 2020

Description. This work shall consist of furnishing and installing High Load Multi-Rotational type bearing assemblies at the locations shown on the plans.

High Load Multi-Rotational (HLMR) bearings shall be one of the following at the Contractors option unless otherwise noted on the plans:

a) Pot Bearings. These bearings shall be manufactured so that the rotational capability is provided by an assembly having a rubber disc of proper thickness, confined in a manner so it behaves like a fluid. The disc shall be installed, with a snug fit, into a steel cylinder and confined by a tight fitting piston. The outside diameter of the piston shall be no more than 0.03 in. (750 microns) less than the inside diameter of the cylinder at the interface level of the piston and rubber disc. The sides of the piston shall be beveled. PTFE sheets, or silicone grease shall be utilized to facilitate rotation of the rubber disc. Suitable brass sealing rings shall be provided to prevent any extrusion between piston and cylinder.

b) Shear Inhibited Disc Type Bearing. The Structural Element shall be restricted from shear by the pin and ring design and need not be completely confined as with the Pot Bearing design. The disc shall be a molded monolithic Polyether Urethane compound.

These bearings shall be further subdivided into one or more of the following types:

1) Fixed. These allow rotation in any direction but are fixed against translation.

2) Guided Expansion. These allow rotation in any direction but translation only in limited directions.

3) Non-Guided Expansion. These allow rotation and translation in any direction.

The HLMR bearings shall be of the type specified and designed for the loads shown on the plans. The design of the top and bottom bearing plates are based on detail assumptions which are not applicable to all suppliers and may require modifications depending on the supplier chosen by the Contractor. The overall depth dimension for the HLMR bearings shall be as specified on the plans. The horizontal dimensions shall be limited to the available bearing seat area. Any modifications required to accommodate the bearings chosen shall be submitted to the Engineer for approval prior to ordering materials. Modifications may include the addition of steel filler plates or the adjustment of beam seat elevations. Adjustments to bridge seat elevations and accompanying reinforcement details shall be approved by the Structural Engineer of record. Modifications required shall be made at no additional cost to the State. Inverted pot bearing configurations will not be permitted.

The Contractor shall comply with all manufacturer’s material, fabrication and installation requirements specified.
All bearings shall be supplied by prequalified manufacturers. The Department will maintain a list of prequalified manufacturers. The Contractor’s options are limited to those systems prequalified by the Department on the date that the contract is bid.

Submittals. Shop drawings shall be submitted to the Engineer for approval according to Article 105.04 of the Standard Specifications. All steel filler plate details shall be included in the shop drawings. In addition the Contractor shall furnish certified copies of the bearing manufacturer’s test reports on the physical properties of the component materials for the bearings to be furnished and a certification by the bearing manufacturer stating the bearing assemblies furnished conform to all the requirements shown on the plans and as herein specified. Submittals with insufficient test data and supporting certifications will be rejected.

Materials. The materials for the HLMR bearing assemblies shall be according to the following:

(a) Elastomeric Materials. The rubber disc for Pot bearings shall be according to Article 1083.02(a) of the Standard Specifications.

(b) Polytetrafluoroethylene (PTFE) Material. The PTFE material shall be according to Article 1083.02(b) of the Standard Specifications, except that it shall be dimpled lubricated with a maximum coefficient of friction of 0.02 on stainless steel. The friction requirement shall be as specified in the Long Term Deterioration Test required for prequalification and the Sliding Friction Test as specified below.

(c) Stainless Steel Sheets. The stainless steel sheets shall be of the thickness specified and shall be according to Article 1083.02(c).

(d) Structural Steel. All structural steel used in the bearing assemblies shall be according to AASHTO M 270, Grade 50 (M 270M Grade 345), unless otherwise specified.

(e) Threaded studs. The threaded stud, when required, shall conform to the requirements of Article 1083.02(d)(4) of the Standard Specifications.
Polyether Urethane for Disc bearings shall be according to all of the following requirements:

<table>
<thead>
<tr>
<th>PHYSICAL PROPERTY</th>
<th>ASTM TEST METHOD</th>
<th>REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness, Type D durometer</td>
<td>D 2240</td>
<td>45 Min 65 Max</td>
</tr>
<tr>
<td>Tensile Stress, psi (kPa) At 100% elongation, min</td>
<td>D 412</td>
<td>1500 psi (10,350 kPa) 2300 psi (15,900 kPa)</td>
</tr>
<tr>
<td>Tensile Stress, psi (kPa) At 200% elongation, min</td>
<td>D 412</td>
<td>2800 psi (19,300 kPa) 4000 psi (27,600 kPa)</td>
</tr>
<tr>
<td>Tensile Strength, psi (kPa), min</td>
<td>D 412</td>
<td>4000 psi (27,600 kPa) 6000 psi (41,400 kPa)</td>
</tr>
<tr>
<td>Ultimate Elongation, %, min</td>
<td>D 412</td>
<td>350 220</td>
</tr>
<tr>
<td>Compression Set 22 hr. at 158 °F (70 °C), Method B %, max</td>
<td>D 395</td>
<td>40 40</td>
</tr>
</tbody>
</table>

The physical properties for a durometer hardness between the minimum and maximum values shown above shall be determined by straight line interpolation.

Design. The fabricator shall design the HLMR bearings according to the appropriate AASHTO Design Specifications noted on the bridge plans.

Fabrication. The bearings shall be complete factory-produced assemblies. They shall provide for rotation in all directions and for sliding, when specified, in directions as indicated on the plans. All bearings shall be furnished as a complete unit from one manufacturing source. All material used in the manufacture shall be new and unused with no reclaimed material incorporated into the finished assembly.

The translation capability for both guided and non-guided expansion bearings shall be provided by means of a polished stainless steel sliding plate that bears on a PTFE sheet bonded and recessed to the top surface of the piston or disc. The sliding element of expansion bearings shall be restrained against movement in the fixed direction by exterior guide bars capable of resisting the horizontal forces or 20 percent of the vertical design load on the bearing applied in any direction, whichever is greater. The sliding surfaces of the guide bar shall be of PTFE sheet and stainless steel. Guiding off of the fixed base, or any extension of the base, will not be permitted.

Structural steel bearing plates shall be fabricated according to Article 505.04(l) of the Standard Specifications. Prior to shipment the exposed edges and other exposed portions of the structural steel bearing plates shall be cleaned and given a corrosion protection coating as specified on the plans and according to the applicable Special Provisions and Articles 506.03.
and 506.04 of the Standard Specifications. During cleaning and coating the stainless steel, PTFE sheet and neoprene shall be protected from abrasion and coating material.

PTFE sheets shall be bonded to steel under factory controlled conditions using heat and pressure for the time required to set the epoxy adhesive used. The PTFE sheet shall be free from bubbles and the sliding surface shall be burnished to an absolutely smooth surface.

The steel piston and the steel cylinder for pot bearings shall each be machined from a solid piece of steel. The steel base cylinder shall be either integrally machined, recessed into with a snug fit, or continuously welded to its bottom steel bearing plate.

Packaging. Each HLMR bearing assembly shall be fully assembled at the manufacturing plant and delivered to the construction site as complete units. The assemblies shall be packaged, crated or wrapped so the assemblies will not be damaged during handling, transporting and shipping. The bearings shall be held together with removable restraints so sliding surfaces are not damaged.

Centerlines shall be marked on both top and base plates for alignment in the field. The bearings shall be shipped in moisture-proof and dust-proof covers.

Performance Testing. The following performance tests are required. All tests shall be performed by the manufacturer prior to shipment. Where lot testing is permitted, a lot size shall be the number of bearings per type on the project but not to exceed 25 bearings per type.

Dimension Check. Each bearing shall be checked dimensionally to verify all bearing components are within tolerances. Failure to satisfy any dimensional tolerance shall be grounds for rejecting the bearing component or the entire bearing assembly.

Clearance Test. This test shall be performed on one bearing per lot. The bearing selected for this test shall be the one with the least amount of clearance based on the dimension check. The bearing assembly shall be loaded to its service limit state rated capacity at its full design rotation but not less than 0.02 radians to verify the required clearances exist. This test shall be performed twice for each bearing with the rotation oriented longitudinally with the bridge once in each direction. Any visual signs of rubbing or binding shall be grounds for rejection of the lot.

Proof Load Test. This test shall be performed on one bearing per lot. The bearing assembly shall be load tested to 150 percent of the service limit state rated capacity at a rotation of 0.02 radians. The load shall be maintained for 5 minutes, removed then reapplied for 5 minutes. If the load drops below the required value during either application, the test shall be restarted from the beginning. This test shall be performed twice for each bearing with the rotation oriented longitudinally with the bridge once in each direction.

The bearing shall be visually examined both during the test and upon disassembly after the test. Any resultant visual defects include, but are not limited to:

1. Extruded or deformed elastomer, polyether urethane, or PTFE.
2. Insufficient clearances such as evidence of metal to metal contact between the pot wall and the top plate.

3. Damaged components such as cracked steel, damaged seal rings, or damaged limiting rings.

4. Bond failure.

If any of the above items are found it shall be grounds for rejection of the lot.

Sliding Friction Test. For expansion bearings, this test shall be performed on one bearing per lot. The sliding surfaces shall be thoroughly cleaned with a degreasing solvent. No lubrication other than that specified for the bearing shall be used. The bearing shall be loaded to its service limit state rated capacity for 1 hour prior to and throughout the duration of the sliding test. At least 12 cycles of plus and minus sliding with an amplitude equaling the smaller of the design displacement and 1 inch (25 mm) shall then be applied. The average sliding speed shall be between 0.1 inch and 1.0 inches (2.5 mm and 25 mm) per minute. The sliding friction coefficient shall be computed for each direction of each cycle and its mean and standard deviation shall be computed for the sixth through twelfth cycles.

The friction coefficient for the first movement and the mean plus two standard deviations for the sixth through twelfth cycles shall not exceed the design value used. In addition, the mean value for the sixth through twelfth cycles shall not exceed 2/3 of the design value used. Failure of either of these shall result in rejection of the lot.

The bearing shall also be visually examined both during and after the testing, any resultant defects, such as bond failure, physical destruction, or cold flow of the PTFE shall also be cause for rejection of the lot.

The Contractor shall furnish to the Department a notarized certification from the bearing manufacturer stating the HLMR bearings have been performance tested as specified. The Contractor shall also furnish to the Engineer of Tests at the Bureau of Materials and Physical Research (126 East Ash Springfield, IL 62704) a purchase order prior to fabrication. The purchase order shall contain, as a minimum, the quantity and size of each type of bearing furnished. The Department reserves the right to perform any of the specified tests on one or more of the furnished bearings. If the tested bearing shows failure it shall be replaced and the remaining bearings shall be similarly tested for acceptance at the Contractor’s expense.

When directed by the Engineer, the manufacturer shall furnish an additional bearing assembly and/or random samples of component materials used in the bearings, for testing by the Department, according to Article 1083.04 of the Standard Specifications.

Installation. The HLMR bearings shall be erected according to Article 521.05 of the Standard Specifications.

Exposed edges and other exposed portions of the structural steel plates shall be field painted as specified for Structural Steel.
Basis of Payment. This work will be paid for at the contract unit price each for HIGH LOAD MULTI-ROTATIONAL BEARINGS, FIXED; HIGH LOAD MULTI-ROTATIONAL BEARINGS, GUIDED EXPANSION; or HIGH LOAD MULTI-ROTATIONAL BEARINGS, NON-GUIDED EXPANSION of the load rating specified.

When the fabrication and erection of HLMR bearings is accomplished under separate contracts, the applicable requirements of Article 505.09 shall apply.

Fabricated HLMR bearings and other materials complying with the requirements of this item, furnished and accepted, will be paid for at the contract unit price each for FURNISHING HIGH LOAD MULTI-ROTATIONAL BEARINGS, FIXED, FURNISHING HIGH LOAD MULTI-ROTATIONAL BEARINGS, GUIDED EXPANSION or FURNISHING HIGH LOAD MULTI-ROTATIONAL BEARINGS, NON-GUIDED EXPANSION of the load rating specified.

Storage and care of fabricated HLMR bearings and other materials complying with the requirements of this item by the Fabrication Contractor beyond the specified storage period, will be paid for at the contract unit price per calendar day for STORAGE OF HIGH LOAD MULTI-ROTATIONAL BEARINGS if a pay item is provided for in the contract, or will be paid for according to Article 109.04 if a pay item is not provided in the contract.

HLMR bearings and other materials fabricated under this item erected according to the requirements of the specifications, and accepted, will be paid for at the contract unit price each for ERECTING HIGH LOAD MULTI-ROTATIONAL BEARINGS, FIXED, ERECTING HIGH LOAD MULTI-ROTATIONAL BEARINGS, GUIDED EXPANSION or ERECTING HIGH LOAD MULTI-ROTATIONAL BEARINGS, NON-GUIDED EXPANSION of the load rating specified.