SEGMENTAL CONCRETE BLOCK WALL
Effective: January 7, 1999
Revised: October 30, 2012

Description. This work shall consist of furnishing the design computations, shop plans, materials, equipment and labor to construct a Segmental Concrete Block Retaining Wall to the limits shown on the plans.

General. The wall shall consist of a leveling pad, precast concrete blocks (either dry-cast or wet cast), select fill and, if required by the design, soil reinforcement. The wall shall be designed and constructed according to the lines, grades, and dimensions shown on the contract plans and approved shop plans.

Submittals. The wall supplier shall submit design computations and shop plans to the Engineer according to Article 1042.03(b) of the Standard Specifications. No work or ordering of materials for the structure shall be done by the Contractor until the submittal has been approved in writing by the Engineer. The shop plans shall be sealed by an Illinois Licensed Structural Engineer and shall include all details, dimensions, quantities, and cross sections necessary to construct the wall and shall include, but not be limited to, the following items:

(a) Plan, elevation, and cross section sheet(s) for each wall showing the following:

 (1) A plan view of the wall indicating the offsets from the construction centerline to the first course of blocks at all changes in horizontal alignment. These shall be calculated using the offsets to the front face of the block shown on the contract plans and the suppliers proposed wall batter. The plan view shall indicate bottom (and top course of block when battered), the excavation and select fill limits as well as any soil reinforcing required by the design. The centerline of any drainage structure or pipe behind or passing through/under the wall shall also be shown.

 (2) An elevation view of the wall, indicating the elevation and all steps in the top course of blocks along the length of the wall. The top of these blocks shall be at or above the theoretical top of block line shown on the contract plans. This view shall also show the steps and proposed top of leveling pad elevations as well as the finished grade line at the wall face specified on the contract plans. These leveling pad elevations shall be located at or below the theoretical top of leveling line shown on the contract plans. The location, size, and length of any soil reinforcing connected to the blocks shall be indicated.

 (3) Typical cross section(s) showing the limits of the select fill, soil reinforcement if used in the design. The right-of-way limits shall be indicated as well as the proposed excavation, cut slopes, and the elevation relationship between existing ground conditions and proposed grades.

 (4) All general notes required for constructing the wall.
(b) All details for the leveling pads, including the steps, shall be shown. The theoretical top of the leveling pad shall either be below the anticipated frost depth or 1.5 ft. (450 mm) below the finished grade line at the wall face, whichever is greater; unless otherwise shown on the plans. The minimum leveling pad thickness shall be 6 in. (152 mm).

(c) Cap blocks shall be used to cover the top of the standard block units. The top course of blocks and cap blocks shall be stepped to satisfy the top of block line shown on the contract plans.

(d) All details of the block and/or soil reinforcement placement around all appurtenances located behind, on top of, or passing through the wall shall be clearly indicated. Any modifications to the design of these appurtenances to accommodate a particular design arrangement shall also be submitted.

(e) All details of the blocks, including color and texture shall be shown. The exterior face shall preferably be straight, textured with a “split rock face” pattern, and dark gray in color unless otherwise stated on the plans.

(f) All block types (standard, cap, corner, and radius turning blocks) shall be detailed showing all dimensions.

(g) All blocks shall have alignment/connection devices such as shear keys, leading/trailing lips, or pins. The details for the connection devices between adjacent blocks and the block to soil reinforcement shall be shown. The block set back or face batter shall be limited to 20 degrees from vertical, unless otherwise shown by the plans.

Materials. The materials shall meet the following requirements:

(a) Dry-Cast Concrete Block: Dry-cast concrete block proposed for use shall be pre-cast and produced according Article 1042.02 and the requirements of ASTM C1372 except as follows:

1. Fly ash shall be according to Articles 1010.01 and 1010.02(b).
2. Ground granulated blast-furnace slag shall be according to Articles 1010.01 and 1010.05.
3. Aggregate shall be according to Articles 1003.02 and 1004.02, with the exception of gradation.
4. Water shall be according to Section 1002.
5. Testing for freeze-thaw durability will not be required. However, unsatisfactory field performance as determined by the Department will be cause to prohibit the use of the block on Department projects.
(b) Wet-cast Concrete Block: Wet-cast concrete block proposed for use shall be pre-cast and produced according to Section 1020 and Article 1042.02. The concrete shall be Class PC with a minimum compressive strength of at least 3000 psi (31 MPa) at 28 days.

(c) Select fill: The select fill, defined as the material placed in the reinforced volume behind the wall, shall be according to Sections 1003 and 1004 of the Standard Specifications and the following:

1. Select Fill Gradation. Either a coarse aggregate or a fine aggregate may be used. For coarse aggregate, gradations CA 6 thru CA 16 may be used. For fine aggregate, gradations FA 1, FA 2, or FA 20 may be used.

2. Select Fill Quality. The coarse or fine aggregate shall have a maximum sodium sulfate (Na₂SO₄) loss of 15 percent according to Illinois Modified AASHTO T 104.

3. Select Fill Internal Friction Angle. The effective internal friction angle for the coarse or fine aggregate shall be a minimum 34 degrees according to AASHTO T 236 on samples compacted to 95 percent density according to Illinois Modified AASHTO T 99. The AASHTO T 296 test with pore pressure measurement may be used in lieu of AASHTO T 236. If the vendor’s design uses a friction angle higher than 34 degrees, as indicated on the approved shop drawings, this higher value shall be taken as the minimum required.

4. Select Fill and Geosynthetic Reinforcing. When geosynthetic reinforcing is used, the select fill pH shall be 4.5 to 9.0 according to Illinois Modified AASHTO T 289.

5. Test Frequency. Prior to start of construction, the Contractor shall provide internal friction angle and pH test results to show the select fill material meets the specification requirements. However, the pH will be required only when geosynthetic reinforcing is used. All test results shall not be older than 12 months. In addition, a sample of select fill material will be obtained for testing and approval by the Department. Thereafter, the minimum frequency of sampling and testing at the jobsite will be one per 40,000 tons (36,300 metric tons) of select fill material. Testing to verify the internal friction angle will only be required when the wall design utilizes a minimum effective internal friction angle greater than 34 degrees, or when crushed coarse aggregate is not used.

When a fine aggregate is selected, the rear of all block joints shall be covered by a non-woven needle punch geotextile filter material according to Article 1080.05 of the Standard Specifications and shall have a minimum permeability according to ASTM D4491 of 0.008 cm/sec. All fabric overlaps shall be 6 in. (150 mm) and non-sewn. As an alternative to the geotextile, a coarse aggregate shall be placed against the back face of the blocks to create a minimum 12 in. (300 mm) wide continuous gradation filter to prevent the select fill material from passing through the block joints.

(d) Leveling pad: The material shall be either Class SI concrete according to Article 1020.04 or compacted coarse aggregate according to Articles 1004.04, (a) and (b). The compacted coarse aggregate gradation shall be CA 6 or CA 10.
(e) Soil Reinforcement: If soil reinforcement is required by the approved design, the Contractor shall submit a manufacturer’s certification for the soil reinforcement properties which equals or exceeds those required in the design computations. The soil reinforcement shall be manufactured from high density polyethylene (HDPE) uniaxial or polypropylene biaxial resins or high tenacity polyester fibers with a PVC coating, stored between -20 and 140°F (-29 and 60°C). The following standards shall be used in determining and demonstrating the soil reinforcement capacities:

- ASTM D638 Test Method for Tensile Properties of Plastic
- ASTM D1248 Specification for Polyethylene Plastics Molding and Extrusion Materials
- ASTM D4218 Test Method for Carbon Black Content in Polyethylene Compounds
- ASTM D5262 Test Method for Evaluating the Unconfined Tension Creep Behavior of Geosynthetics
- GG1-Standard Test Method for Geogrid Rib Tensile Strength
- GG2-Standard Test Method for Geogrid Junction Strength
- GG4-Standard Practice for Determination of the Long Term Design Strength of Geogrid
- GG5-Standard Practice for Evaluating Geogrid Pullout Behavior

Design Criteria. The design shall be according to AASHTO Specifications and commentaries for Earth Retaining Walls or FHWA Publication No. HI-95-038, SA-96-071 and SA-96-072. The wall supplier shall be responsible for all internal stability aspects of the wall design.

Internal stability design shall insure that adequate factors of safety against overturning and sliding are present at each level of block. If required by design, soil reinforcement shall be utilized and the loading at the block/soil reinforcement connection as well as the failure surface must be indicated. The calculations to determine the allowable load of the soil reinforcement and the factor of safety against pullout shall also be included. The analysis of settlement, bearing capacity, and overall slope stability are the responsibility of the Department.

External loads such as those applied through structure foundations, from traffic or railroads, slope surcharge etc., shall be accounted for in the internal stability design. The presence of all appurtenances behind, in front of, mounted upon, or passing through the wall volume such as drainage structures, utilities, structure foundation elements, or other items shall be accounted for in the internal stability design of the wall.

Construction Requirements. The Contractor shall obtain technical assistance from the supplier during wall erection to demonstrate proper construction procedures and shall include all costs related to this technical assistance in the unit price bid for this item.

The foundation material for the leveling pad and select fill volume shall be graded to the design elevation and compacted according to Article 205.05, except the minimum required compaction shall be 95 percent of the standard laboratory density. The Engineer will perform one density test per 1500 ft (450 m) of the entire length of foundation material through both cut and fill areas. Any foundation soils found to be unsuitable shall be removed and replaced as directed by the Engineer and shall be paid for according to Article 109.04.
The select fill lift placement shall closely follow the erection of each course of blocks. All aggregate shall be swept from the top of the block prior to placing the next block lift. If soil reinforcement is used, the select fill material shall be leveled and compacted before placing and attaching the soil reinforcement to the blocks. The soil reinforcement shall be pulled taut, staked in place, and select fill placed from the rear face of the blocks outward. The lift thickness shall be the lesser of 10 in. (255 mm) loose measurement or the proposed block height.

The select fill shall be compacted according to Article 205.05, except the minimum required compaction shall be 95 percent of the standard laboratory density. Compaction shall be achieved using a minimum of 3 passes of a lightweight mechanical tamper, roller, or vibratory system. The Engineer will perform one density test per 5000 cu yd (3800 cu m) and not less than one test per 2 ft (0.6m) of lift. The top 12 in. (300 mm) of backfill shall be a cohesive, impervious material capable of supporting vegetation, unless other details are specified on the plans.

The blocks shall be maintained in position as successive lifts are compacted along the rear face of the block. Vertical, horizontal, and rotational alignment tolerances shall not exceed 0.5 in. (12 mm) when measured along a 10 ft. (3 m) straight edge.

Method of Measurement. Segmental Concrete Block Wall will be measured by the square foot (square meter) of wall face from the top of block line to the theoretical top of the leveling pad for the length of the wall in a vertical plane, as shown on the contract plans.

Basis of Payment. This work will be paid for at the contract unit price per square foot (square meter) for SEGMENTAL CONCRETE BLOCK WALL.