Description. This work shall consist of preparing the design, furnishing the materials, and constructing the precast modular retaining walls to the lines, grades and dimensions shown in the contract plans and as directed by the Engineer.

General. The precast modular wall shall consist of precast concrete modules, select fill and a leveling pad. The precast concrete modules shall be sized to have sufficient external stability resistance at each module course to satisfy the design criteria. The material, fabrication and construction shall comply with this Special Provision and the requirements specified by the supplier of the wall system selected by the Contractor for use on the project.

Suppliers. The Department maintains a pre-qualified list of proprietary structural systems allowed for precast modular retaining walls. This list can be found on the Departments web site under Prequalified Structural Systems. The Contractor’s options are limited to those systems pre-qualified by the Department. These systems have been reviewed for structural feasibility and adequacy only. Presence on this list shall in no case relieve the Contractor of the site specific design or QC/QA requirements stated herein.

Submittals. The wall system supplier shall submit complete design calculations and shop drawings to the Engineer according to Article 1042.03(b) of the Standard Specifications no later than 90 days prior to beginning construction of the wall. No work or ordering of materials for the structure shall be done by the Contractor until the submittal has been approved in writing by the Engineer. All submittals shall be sealed by an Illinois Licensed Structural Engineer and shall include all details, dimensions, quantities and cross sections necessary to construct the wall and shall include, but not be limited to, the following items:

(a) Plan, elevation and cross section sheet(s) for each wall showing the following:

(1) A plan view of the wall indicating the offsets from the construction centerline to the face of the wall at all changes in horizontal alignment. The plan view shall show the limits of precast modules and stations where changes in length and/or size of modules occur. The centerline shall be shown for all drainage structures or pipes behind or passing through and/or under the wall.

(2) An elevation view of the wall indicating the elevations of the top of the modules. These elevations shall be at or above the top of exposed module line shown on the contract plans. This view shall show the elevations of the top of the leveling pads, all steps in the leveling pads and the finished grade line shown in the contract plans. Each module type, size and embedded length shall be designated.

(3) A listing of the summary of quantities shall be provided on the elevation sheet of each wall.
(4) Typical cross section(s) showing the precast modules, select fill within the modules, porous granular backfill, leveling pad, right-of-way limits, including excavation cut slopes and elevation relationship between existing ground conditions and the finished grade line.

(5) All general notes required for constructing the wall as well as the locations of lifting devices and/or support points in the precast modules shall be indicated.

(b) The leveling pads may be precast or cast in place concrete, or compacted coarse aggregate. All details for the leveling pads, including the steps, shall be shown. The top of the leveling pad shall be located at or below the theoretical top of the leveling pad line shown on the contract plans. The theoretical top of leveling pad line shall be 3.5 ft. (1.1 m) below finished grade line at the front face of the wall, unless otherwise shown on the contract plans.

(c) Where concrete coping or barrier is specified, the modules shall extend up into the coping or barrier a minimum of 2 in. (50 mm). The top of the modules may be level or sloped to satisfy the top of module line shown on the contract plans. Cast-in-place concrete will not be an acceptable replacement for module areas below the top of module line. Precast coping may be substituted for the CIP coping if approved by the Engineer.

(d) All module types shall be detailed. The details shall show all dimensions necessary to cast and construct each type of module, all reinforcing steel in the module, and the location of any shear key or connection devices.

(e) All details of the wall module placement around all appurtenances located behind, on top of, or passing through the wall modules and select fill such as traffic barriers, coping, foundations, and utilities etc. shall be clearly indicated. Any modifications to the design of these appurtenances to accommodate a particular system shall also be submitted.

(f) When specified on the contract plans, all details of architectural treatment for the exposed surfaces of the module, including color, texture and form liners shall be shown.

(g) The details of bearing pads, joint filler or other materials used to prevent concrete to concrete contact on the front face as well as any pins, groves or other alignment mechanisms shall be indicated.

The initial submittal shall include three sets of shop drawings and one set of calculations. One set of drawings will be returned to the Contractor with any corrections indicated. After approval, the Contractor shall furnish the Engineer with eight sets of corrected prints and one mylar set for distribution by the Department. No work or ordering of materials for the structure shall be done until the submittal has been approved by the Engineer.
Materials. The precast modular retaining walls shall conform to the supplier’s standards as previously approved by the Department, AASHTO Specifications for prefabricated modular walls and the following:

(a) Steel connection hardware shall be galvanized according to AASHTO M 232 or AASHTO M 111 as applicable.

(b) All precast modules shall be manufactured with Class PC concrete according to Section 504, Article 1042.02, Article 1042.03, and the following requirements:

(1) The minimum panel thickness shall be 3 1/2 in. (90 mm).

(2) The minimum reinforcement bar cover shall be 1 1/2 in. (38 mm).

(3) All dimensions shall be within 3/16 in. (5 mm).

(4) Angular distortion with regard to the height of the panel shall not exceed 0.2 in. (5 mm) in 5 ft. (1.5 m).

(5) Surface defects on formed surfaces measured on a length of 5 ft. (1.5 m) shall not be more than 0.1 in. (2.5 mm).

Concrete surfaces exposed to view in the completed wall shall be finished according to Article 503.15(a) of the Standard Specifications.

(c) Reinforcing steel shall be according to Article 1006.10(a)(2). Welded steel wire fabric for concrete reinforcement shall be according to Article 1006.10(b)(1) except the welded wire fabric shall be epoxy coated according to ASTM A884.

(d) Soil Reinforcement: If soil reinforcement is required by the approved design, the Contractor shall submit a manufacturer’s certification for the soil reinforcement properties which equals or exceeds those required in the design computations. The soil reinforcement shall be manufactured from high density polyethylene (HDPE) uniaxial or polypropylene biaxial resins or high tenacity polyester fibers with a PVC coating, stored between -20 and 140° F (-29 and 60° C). The following standards shall be used in determining and demonstrating the soil reinforcement capacities:

ASTM D638 Test Method for Tensile Properties of Plastic
ASTM D1248 Specification for Polyethylene Plastics Molding and Extrusion Materials
ASTM D4218 Test Method for Carbon Black Content in Polyethylene Compounds
ASTM D5262 Test Method for Evaluating the Unconfined Tension Creep Behavior of Geosynthetics
GG1-Standard Test Method for Geogrid Rib Tensile Strength
GG2-Standard Test Method for Geogrid Junction Strength
GG4-Standard Practice for Determination of the Long Term Design Strength of Geogrid
GG5-Standard Practice for Evaluating Geogrid Pullout Behavior
(c) The select fill, defined as the material placed in the reinforced volume behind the wall or within the precast modules, shall be according to Sections 1003 and 1004 of the Standard Specifications and the following:

1. Select Fill Gradation. Either a coarse aggregate or a fine aggregate may be used. For coarse aggregate, gradations CA 6 thru CA 16 may be used. For fine aggregate, gradations FA 1, FA 2, or FA 20 may be used.

2. Select Fill Quality. The coarse or fine aggregate shall have a maximum sodium sulfate \((\text{Na}_2\text{SO}_4)\) loss of 15 percent according to Illinois Modified AASHTO T 104.

3. Select Fill Internal Friction Angle. The effective internal friction angle for the coarse or fine aggregate shall be a minimum 34 degrees according to AASHTO T 236 on samples compacted to 95 percent density according to Illinois Modified AASHTO T 99. The AASHTO T 296 test with pore pressure measurement may be used in lieu of AASHTO T 236. If the vendor’s design uses a friction angle higher than 34 degrees, as indicated on the approved shop drawings, this higher value shall be taken as the minimum required.

4. Select Fill and Geosynthetic Reinforcing. When geosynthetic reinforcing is used, the select fill pH shall be 4.5 to 9.0 according to Illinois Modified AASHTO T 289.

5. Test Frequency. Prior to start of construction, the Contractor shall provide an internal friction angle and pH test results to show the select fill material meets the specification requirement. However, the pH will be required only when geosynthetic reinforcing is used. This test result shall be no more than 12 months old. In addition, a sample of select fill material will be obtained for testing and approval by the Department. Thereafter, the minimum frequency of sampling and testing at the jobsite will be one per 40,000 tons (36,300 metric tons) of select fill. Testing to verify the internal friction angle will be required when the wall design utilizes a minimum effective internal friction angle greater than 34 degrees, or when crushed coarse aggregate is not used.

(f) The embankment material behind the precast modules or behind the reinforced volume of select fill shall be according to Section 202 and/or Section 204. An embankment unit weight of 120 lbs/cubic foot (1921 kg/cubic meter) and an effective friction angle of 30 degrees shall be used in the wall system design, unless otherwise indicated on the plans.

(g) The geotextile filter material used across the module joints shall be either a non-woven needle punch polyester or polypropylene or a woven monofilament polypropylene.

(h) The bearing pads shall be rubber, neoprene, polyvinyl chloride, or polyethylene material of the type and grade as recommended by the wall supplier. Other material recommended by the wall supplier may be used if approved by the Engineer.
(i) Leveling pad: The material shall be either Class SI concrete according to Article 1020.04 or compacted coarse aggregate according to Articles 1004.04, (a) and (b). The compacted coarse aggregate gradation shall be CA 6 or CA 10.

Design Criteria. The design shall be according to the AASHTO LRFD Design Specifications for Prefabricated Modular Walls except as modified herein. The wall supplier shall be responsible for all stability aspects of the wall design (including sliding, overturning, and bearing pressure). The analyses of settlement and overall slope stability will be the responsibility of the Department.

Typical design procedures and details, once accepted by the Department, shall be followed. All wall system changes shall be submitted in advance to the Department for approval.

External loads, such as those applied through structure foundations, from traffic or railroads, slope surcharge etc., shall be accounted for in the external stability design. The presence of all appurtenances behind, in front of, mounted upon, or passing through the wall volume such as drainage structures, utilities, structure foundation elements or other items shall be accounted for in the external stability design of the wall.

Coulomb’s lateral earth pressure theory shall be used to calculate the vertical and horizontal forces acting on the rear face of the precast modules.

The overturning calculations shall assume no more than 80 percent of the soil dead load within the precast modules available to resist overturning forces. Sliding calculations shall consider sliding both between each element and of the bottom element across the foundation soils. The maximum applied equivalent uniform bearing pressure under each module width shall be clearly indicated on the shop drawings submitted and shall be less than the allowable bearing pressure of the soil shown on the contract plans. Footings or other treatments to satisfy the bearing pressure requirements will be designed by the wall supplier and included in the wall bid price.

If the wall supplier needs additional information to complete the design, the Contractor shall be responsible for obtaining the information at no additional cost to the Department.

Construction Requirements. The Contractor shall obtain technical assistance from the supplier during wall erection to demonstrate proper construction procedures and shall include any costs related to this technical assistance in the unit price bid for this item.

The foundation soils for the structure shall be graded for a width equal to or exceeding the module width. Prior to wall construction, the foundation shall be compacted with a smooth wheel vibratory roller. Any foundation soils found to be unsuitable shall be removed and replaced, as directed by the Engineer, and shall be paid for separately according to Section 202 of the Standard Specifications.
The modules may not be loaded or shipped to the project site until they have obtained a minimum compressive strength of 3500 psi (24 MPa) and no sooner than seven days after casting. Precast modules shall be lifted and supported at the points indicated on the shop plans. They shall be stored off the ground. Stacked modules shall be separated by battens across the full width of each bearing point as recommended by the supplier to prevent concrete to concrete contact.

The first course of modules must be erected with particular care and adjustment as required to correct the vertical, horizontal and transverse alignment. Poor alignment of the base course will magnify tolerance problems in upper modules and require dismantling and re-erection of the wall. A ¼ in. (6 mm) minimum and ¾ in. (18 mm) maximum joint separation shall be provided between adjacent modules at the face to prevent direct concrete to concrete contact. Vertical tolerances and horizontal alignment tolerances shall not exceed 3/4 in. (19 mm) when measured along a 10 ft. (3 m) straight edge. The overall vertical tolerance of the wall, (plumbness from top to bottom) shall not exceed 1/2 in. per 10 ft. (13 mm per 3 m) of wall height.

The rear face of all vertical and horizontal module joints shall be covered by a geotextile filter fabric, per the wall supplier’s recommendations. No adhesive will be allowed on this material directly over the joints to maintain fabric permeability. The minimum fabric width shall be 12 in. (300 mm) and where laps must be used, a non-sewn lap of 6 in. (150 mm) shall be used as a minimum.

The select fill and embankment placement shall closely follow the erection of each lift of modules. The maximum lift thickness shall be placed according to the supplier’s recommended procedures except, the lifts shall not exceed 10 in. (255 mm) loose measurement or as approved by the Engineer.

At the end of each day’s operations, the Contractor shall shape the last level of select fill to permit runoff of rainwater away from the wall face. Select fill shall be compacted according to the project specifications for embankment except the minimum required compaction shall be 95 percent of maximum density as determined by AASHTO T 99. The Engineer will perform one density test per 5000 cu yd (3800 cu m) and not less than one test per 2 ft (0.6 m) of lift.

Method of Measurement. Precast Modular Retaining Wall will be measured for payment in square feet (square meters). The retaining wall will be measured from the “top of exposed module line” to the theoretical top of leveling pad line for the length of the wall as shown on the contract plans.

Basis of Payment. This work, including furnishing and placement of the precast modules, select fill, joint separation material, geotextile and other accessories will be paid for at the contract unit price per square foot (square meter) for PRECAST MODULAR RETAINING WALL.

Embankment placed outside of the select fill volume will be measured and paid for according to Section 207 of the Standard Specifications.
Concrete coping when specified on the contract plans shall be included for payment in this work.