<table>
<thead>
<tr>
<th>CELL / MODEL NAME</th>
<th>DESCRIPTION</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA-P-34FS-0 (1 of 3)</td>
<td>Bridge Approach; Precast; 34 in. F Shape; No skew</td>
<td>11/22/2016</td>
</tr>
<tr>
<td>BA-P-34FS-0 (2 of 3)</td>
<td>Bridge Approach; Precast; 34 in. F shape; No skew</td>
<td>11/22/2016</td>
</tr>
<tr>
<td>BA-P-34FS-0 (3 of 3)</td>
<td>Bridge Approach; Precast; 34 in. F shape; No skew</td>
<td>11/22/2016</td>
</tr>
<tr>
<td>BA-P-34FS-L-Greater than 30 degrees (1 of 3)</td>
<td>Bridge Approach; Precast; 34 in. F shape; Left skew; Greater than 30 degrees</td>
<td>11/22/2016</td>
</tr>
<tr>
<td>BA-P-34FS-L-Greater than 30 degrees (2 of 3)</td>
<td>Bridge Approach; Precast; 34 in. F shape; Left skew; Greater than 30 degrees</td>
<td>11/22/2016</td>
</tr>
<tr>
<td>BA-P-34FS-L-Greater than 30 degrees (3 of 3)</td>
<td>Bridge Approach; Precast; 34 in. F shape; Left skew; Greater than 30 degrees</td>
<td>11/22/2016</td>
</tr>
<tr>
<td>BA-P-34FS-L-Less than or equal to 30 degrees (1 of 3)</td>
<td>Bridge Approach; Precast; 34 in. F shape; Left skew; Less than or equal to 30 degrees</td>
<td>11/22/2016</td>
</tr>
<tr>
<td>BA-P-34FS-L-Less than or equal to 30 degrees (2 of 3)</td>
<td>Bridge Approach; Precast; 34 in. F shape; Left skew; Less than or equal to 30 degrees</td>
<td>11/22/2016</td>
</tr>
<tr>
<td>BA-P-34FS-L-Less than or equal to 30 degrees (3 of 3)</td>
<td>Bridge Approach; Precast; 34 in. F shape; Left skew; Less than or equal to 30 degrees</td>
<td>11/22/2016</td>
</tr>
<tr>
<td>BA-P-34FS-R-Greater than 30 degrees (1 of 3)</td>
<td>Bridge Approach; Precast; 34 in. F shape; Right skew; Greater than 30 degrees</td>
<td>11/22/2016</td>
</tr>
<tr>
<td>BA-P-34FS-R-Greater than 30 degrees (2 of 3)</td>
<td>Bridge Approach; Precast; 34 in. F shape; Right skew; Greater than 30 degrees</td>
<td>11/22/2016</td>
</tr>
<tr>
<td>BA-P-34FS-R-Greater than 30 degrees (3 of 3)</td>
<td>Bridge Approach; Precast; 34 in. F shape; Right skew; Greater than 30 degrees</td>
<td>11/22/2016</td>
</tr>
<tr>
<td>BA-P-34FS-R-Less than or equal to 30 degrees (1 of 3)</td>
<td>Bridge Approach; Precast; 34 in. F shape; Right skew; Less than or equal to 30 degrees</td>
<td>11/22/2016</td>
</tr>
<tr>
<td>BA-P-34FS-R-Less than or equal to 30 degrees (2 of 3)</td>
<td>Bridge Approach; Precast; 34 in. F shape; Right skew; Less than or equal to 30 degrees</td>
<td>11/22/2016</td>
</tr>
<tr>
<td>BA-P-34FS-R-Less than or equal to 30 degrees (3 of 3)</td>
<td>Bridge Approach; Precast; 34 in. F shape; Right skew; Less than or equal to 30 degrees</td>
<td>11/22/2016</td>
</tr>
<tr>
<td>BA-P-42FS-0 (1 of 3)</td>
<td>Bridge Approach; Precast; 42 in. F Shape; No skew</td>
<td>11/22/2016</td>
</tr>
<tr>
<td>CELL / MODEL NAME</td>
<td>DESCRIPTION</td>
<td>DATE</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>BA-P-42FS-0 (2 of 3)</td>
<td>Bridge Approach; Precast; 42 in. F shape; No skew</td>
<td>11/22/2016</td>
</tr>
<tr>
<td>BA-P-42FS-0 (3 of 3)</td>
<td>Bridge Approach; Precast; 42 in. F shape; No skew</td>
<td>11/22/2016</td>
</tr>
</tbody>
</table>
The precast bridge approach slab shall be according to Section 504 of the Standard Specifications, and shall be paid for at the contract unit price per square foot for Precast Bridge Approach Slab.

Cost of fabrication of Precast Bridge Approach Slab is not allowed.

The top surface of precast bridge approach slabs shall be finished similar to precast prestressed deck beams with concrete wearing surface as specified in the IDOT "Manual for Fabrication of Precast Prestressed Concrete Products."

Two ½" fabric adjusting shims of the dimensions of the exterior bearing pad shall be provided for each bearing pad location. Cost included with Precast Bridge Approach Slab.

Notes:
- All bearing pads shall be ½" thick.
- Omit holes for fabric bearing pads at approach slab footing end of beams.
- Omit key on exterior.
- Exterior Beam
 - #9 B(E) bars at 12" center, top
 - #5 B(E) bars at 5" center, bottom
- Interior Beam
 - #4 D(E) bar spacing
 - #5 S(E) bar spacing

Compressive strength of precast concrete, f'c shall be 6,000 psi.

Compressive strength of precast concrete during initial lifting, f'c shall be 5,000 psi.

The precast bridge approach slab shall be according to Section 504 of the Standard Specifications, and shall be paid for at the contract unit price per square foot for Precast Bridge Approach Slab.

Cost of fabrication of Precast Bridge Approach Slab is not allowed.

The top surface of precast bridge approach slabs shall be finished similar to precast prestressed deck beams with concrete wearing surface as specified in the IDOT "Manual for Fabrication of Precast Prestressed Concrete Products."

Two ½" fabric adjusting shims of the dimensions of the exterior bearing pad shall be provided for each bearing pad location. Cost included with Precast Bridge Approach Slab.

Notes:
- All bearing pads shall be ½" thick.
- Omit holes for fabric bearing pads at approach slab footing end of beams.
- Exterior Beam
 - #9 B(E) bars at 12" center, top
 - #5 B(E) bars at 5" center, bottom
- Interior Beam
 - #4 D(E) bar spacing
 - #5 S(E) bar spacing

Compressive strength of precast concrete, f'c shall be 6,000 psi.

Compressive strength of precast concrete during initial lifting, f'c shall be 5,000 psi.

The precast bridge approach slab shall be according to Section 504 of the Standard Specifications, and shall be paid for at the contract unit price per square foot for Precast Bridge Approach Slab.

Cost of fabrication of Precast Bridge Approach Slab is not allowed.

The top surface of precast bridge approach slabs shall be finished similar to precast prestressed deck beams with concrete wearing surface as specified in the IDOT "Manual for Fabrication of Precast Prestressed Concrete Products."

Two ½" fabric adjusting shims of the dimensions of the exterior bearing pad shall be provided for each bearing pad location. Cost included with Precast Bridge Approach Slab.

Notes:
- All bearing pads shall be ½" thick.
- Omit holes for fabric bearing pads at approach slab footing end of beams.
- Exterior Beam
 - #9 B(E) bars at 12" center, top
 - #5 B(E) bars at 5" center, bottom
- Interior Beam
 - #4 D(E) bar spacing
 - #5 S(E) bar spacing

Compressive strength of precast concrete, f'c shall be 6,000 psi.

Compressive strength of precast concrete during initial lifting, f'c shall be 5,000 psi.

The precast bridge approach slab shall be according to Section 504 of the Standard Specifications, and shall be paid for at the contract unit price per square foot for Precast Bridge Approach Slab.

Cost of fabrication of Precast Bridge Approach Slab is not allowed.

The top surface of precast bridge approach slabs shall be finished similar to precast prestressed deck beams with concrete wearing surface as specified in the IDOT "Manual for Fabrication of Precast Prestressed Concrete Products."

Two ½" fabric adjusting shims of the dimensions of the exterior bearing pad shall be provided for each bearing pad location. Cost included with Precast Bridge Approach Slab.

Notes:
- All bearing pads shall be ½" thick.
- Omit holes for fabric bearing pads at approach slab footing end of beams.
- Exterior Beam
 - #9 B(E) bars at 12" center, top
 - #5 B(E) bars at 5" center, bottom
- Interior Beam
 - #4 D(E) bar spacing
 - #5 S(E) bar spacing

Compressive strength of precast concrete, f'c shall be 6,000 psi.

Compressive strength of precast concrete during initial lifting, f'c shall be 5,000 psi.

The precast bridge approach slab shall be according to Section 504 of the Standard Specifications, and shall be paid for at the contract unit price per square foot for Precast Bridge Approach Slab.

Cost of fabrication of Precast Bridge Approach Slab is not allowed.

The top surface of precast bridge approach slabs shall be finished similar to precast prestressed deck beams with concrete wearing surface as specified in the IDOT "Manual for Fabrication of Precast Prestressed Concrete Products."

Two ½" fabric adjusting shims of the dimensions of the exterior bearing pad shall be provided for each bearing pad location. Cost included with Precast Bridge Approach Slab.

Notes:
- All bearing pads shall be ½" thick.
- Omit holes for fabric bearing pads at approach slab footing end of beams.
- Exterior Beam
 - #9 B(E) bars at 12" center, top
 - #5 B(E) bars at 5" center, bottom
- Interior Beam
 - #4 D(E) bar spacing
 - #5 S(E) bar spacing

Compressive strength of precast concrete, f'c shall be 6,000 psi.

Compressive strength of precast concrete during initial lifting, f'c shall be 5,000 psi.
INSIDE ELEVATION OF PARAPET AND CURB

End of bridge deck

Concrete Wearing Surface, 5''

Border joints shall be filled with non-shrink grout when the concrete is hardened. All shield forms shall be filled with non-shrink grout. The strip seal shall be made continuous and shall have a minimum thickness of 0.5'' after concrete is set, typically 200°, 300°, and 50° F. The strip seal shall have a minimum thickness of 0.5'' after concrete is set, typically 200°, 300°, and 50° F.

The joint opening shall be adjusted for temperature per Article 520.04 of the Standard Specifications. However, since this detail is for jointless structures, the length of bridge deck to be adjusted shall be equal to half the total bridge length plus the length of the bridge approach pavement.

After pouring or bridge approach slabs have been erected, holes shall be drilled into abutment and anchor dowels placed. Shield forms shall be filled with non-shrink grout to top of precast slabs and cured according to Article 520.03 of the Standard Specifications for a minimum of 24 hours before placing the saw kerfs and sawing surface.

Any concrete poured microtically with the wearing surface, such as curbs, shall not be prime for superstructure, but will be included in the cost of Concrete Wearing Surface, 5''. The strip seal shall be placed continuously and shall have a minimum thickness of 0.5''. The strip seal shall extend 0.5'' beyond the edge of the approach slab. For Structures and drainage treatment details, see sheet 5 of 8.

The manufacturer’s recommended installation methods shall be followed. All steel components shall be galvanized after fabrication according to Article 520.03 of the Standard Specifications. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Parapet concrete shall be paid for as Concrete Superstructure. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf.

The manufacturer’s recommended installation methods shall be followed. All steel components shall be galvanized after fabrication according to Article 520.03 of the Standard Specifications. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Parapet concrete shall be paid for as Concrete Superstructure. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf.

The manufacturer’s recommended installation methods shall be followed. All steel components shall be galvanized after fabrication according to Article 520.03 of the Standard Specifications. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Parapet concrete shall be paid for as Concrete Superstructure. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf.

The manufacturer’s recommended installation methods shall be followed. All steel components shall be galvanized after fabrication according to Article 520.03 of the Standard Specifications. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Parapet concrete shall be paid for as Concrete Superstructure. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf.

The manufacturer’s recommended installation methods shall be followed. All steel components shall be galvanized after fabrication according to Article 520.03 of the Standard Specifications. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Parapet concrete shall be paid for as Concrete Superstructure. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf.

The manufacturer’s recommended installation methods shall be followed. All steel components shall be galvanized after fabrication according to Article 520.03 of the Standard Specifications. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Parapet concrete shall be paid for as Concrete Superstructure. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf.

The manufacturer’s recommended installation methods shall be followed. All steel components shall be galvanized after fabrication according to Article 520.03 of the Standard Specifications. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Parapet concrete shall be paid for as Concrete Superstructure. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf.

The manufacturer’s recommended installation methods shall be followed. All steel components shall be galvanized after fabrication according to Article 520.03 of the Standard Specifications. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Parapet concrete shall be paid for as Concrete Superstructure. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf.

The manufacturer’s recommended installation methods shall be followed. All steel components shall be galvanized after fabrication according to Article 520.03 of the Standard Specifications. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Parapet concrete shall be paid for as Concrete Superstructure. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf.

The manufacturer’s recommended installation methods shall be followed. All steel components shall be galvanized after fabrication according to Article 520.03 of the Standard Specifications. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Parapet concrete shall be paid for as Concrete Superstructure. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf.

The manufacturer’s recommended installation methods shall be followed. All steel components shall be galvanized after fabrication according to Article 520.03 of the Standard Specifications. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Parapet concrete shall be paid for as Concrete Superstructure. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf.

The manufacturer’s recommended installation methods shall be followed. All steel components shall be galvanized after fabrication according to Article 520.03 of the Standard Specifications. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Parapet concrete shall be paid for as Concrete Superstructure. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf.
Exterior Beam

- **Dimensions:** 29'-8''
- **Shape:** 3''
- **No.:** #5
- **Size:** 7''
- **Notes:** 58 -#5 S(E) bars at 6'' cts.
- **Key:** B(E)
- **Holes for dowel rods:** at fixed ends only

Interior Beam

- **Dimensions:** 1'-5''
- **Shape:** 9''
- **No.:** #4
- **Size:** 1'-2''
- **Notes:** 58 -#5 S(E) bars at 6'' cts.
- **Key:** B(E)
- **Holes for fabric bearing pads:** at approach slab footing.

Notes:
- Compressive strength of precast concrete, f'c shall be 6,000 psi.
- Skew 8 spaces at 1'-6'' cts. = 12'-0''
- Conduit 3'' Radius 270 ksi strands
- Each interior beam

Precast Bridge Approach Slab

- **Compressive strength of precast concrete, f'c:** 6,000 psi.
- **Expansion bearing pad:** shall be bonded to the slab footing end of beams.
- **Fabric bearing pad:**
 - All bearing pads shall be 3/8'' thick.
 - Steel nails for fabric bearing pads at approach slab footing and at bases.
- **Expansion bearing pad:** shall be bonded to the approach slab footing.

Bar List

Each Interior Beam

<table>
<thead>
<tr>
<th>Bar No.</th>
<th>Dia.</th>
<th>Length</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>#5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Each Exterior Beam

<table>
<thead>
<tr>
<th>Bar No.</th>
<th>Dia.</th>
<th>Length</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>#5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes:
- Bridge Approach Slab.
- Cost included with Precast Bridge Approach Slab.
- Omit holes for fabric bearing pads at approach slab footing.
- Expansion bearing pad shall be bonded to the approach slab footing.
- The precast bridge approach slab shall be in accordance with Section 504 of the
 Standard Specifications and shall be paid for at the contract unit price per
 square foot for Precast Bridge Approach Slab.
- A minimum 2 1/2'' lifting pins shall be used to engage the lifting loops during
 handling.
- The top surface of precast bridge approach slabs shall be finished similar to
 precast prestressed deck beams with concrete wearing surface as specified in the
 IDOT "Manual for Fabrication of Precast Prestressed Concrete Products."

Additional Information:
- Compressive strength of precast concrete, f'c shall be 6,000 psi.
- The top surface of precast bridge approach slabs shall be finished similar to
 precast prestressed deck beams with concrete wearing surface as specified in the
 IDOT "Manual for Fabrication of Precast Prestressed Concrete Products."
- The precast bridge approach slab shall be according to Section 504 of the
 Standard Specifications and shall be paid for at the contract unit price per
 square foot for Precast Bridge Approach Slab.
- A minimum 2 1/2'' lifting pins shall be used to engage the lifting loops during
 handling.
- Compressive strength of precast concrete, f'c shall be 6,000 psi.
The Joint opening shall be adjusted for temperature per Article 1520.04 of the Standard Specifications. However, since this detail is for parapet and curb construction, it shall be paid for as Concrete Structures.

Notes:
- All steel components shall be galvanized according to Article 1520.03 of the Standard Specifications.
- Articles 631031 and 520.03 of the Standard Specifications shall be followed.
- The manufacturer’s recommended installation methods shall be followed.
- The manufacturer’s recommended installation methods shall be followed.
- The manufacturer’s recommended installation methods shall be followed.
- The manufacturer’s recommended installation methods shall be followed.
- The manufacturer’s recommended installation methods shall be followed.
- The manufacturer’s recommended installation methods shall be followed.
- The manufacturer’s recommended installation methods shall be followed.
- The manufacturer’s recommended installation methods shall be followed.
- The manufacturer’s recommended installation methods shall be followed.
- The manufacturer’s recommended installation methods shall be followed.
- The manufacturer’s recommended installation methods shall be followed.

Approach footings shall be paid for as Concrete Structures. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Approach footing concrete shall be paid for as Concrete Structures. Parapet concrete shall be paid for as Concrete Superstructure.

Notes:
- Any concrete poured monolithically with the wearing surface, such as curbs, shall be paid for as parapet, but will be included in the cost of Concrete Superstructure.
- Any concrete poured monolithically with the wearing surface, such as curbs, shall be paid for as parapet, but will be included in the cost of Concrete Superstructure.
- Any concrete poured monolithically with the wearing surface, such as curbs, shall be paid for as parapet, but will be included in the cost of Concrete Superstructure.
- Any concrete poured monolithically with the wearing surface, such as curbs, shall be paid for as parapet, but will be included in the cost of Concrete Superstructure.
- Any concrete poured monolithically with the wearing surface, such as curbs, shall be paid for as parapet, but will be included in the cost of Concrete Superstructure.
- Any concrete poured monolithically with the wearing surface, such as curbs, shall be paid for as parapet, but will be included in the cost of Concrete Superstructure.
- Any concrete poured monolithically with the wearing surface, such as curbs, shall be paid for as parapet, but will be included in the cost of Concrete Superstructure.
- Any concrete poured monolithically with the wearing surface, such as curbs, shall be paid for as parapet, but will be included in the cost of Concrete Superstructure.
- Any concrete poured monolithically with the wearing surface, such as curbs, shall be paid for as parapet, but will be included in the cost of Concrete Superstructure.
- Any concrete poured monolithically with the wearing surface, such as curbs, shall be paid for as parapet, but will be included in the cost of Concrete Superstructure.

After precast bridge approach slabs have been erected, holes shall be drilled into abutment and abutment dowels placed. Dowel holes shall be filled with non-shrink grout in two-foot spaced and cured according to Article 1520.03 of the Standard Specifications for a minimum of 24 hours before coating the shear keys and wearing surfaces.

Any concrete poured monolithically with the wearing surface, such as curbs, shall be paid for as parapet, but will be included in the cost of Concrete Superstructure.

The strip seal shall be made continuous and shall have a minimum thickness of 1/8". The strip seal shall extend 6" beyond the edge of the approach slab on each end. The configuration of the strip seal shall match the configuration of the Locking Edge Rails. Open or "webbed" strip seal gland configurations are not permitted. The seal shall be sized for a minimum rated movement of 4 inches.

The strip seal shall be made continuous and shall have a minimum thickness of 1/8". The strip seal shall extend 6" beyond the edge of the approach slab on each end. The configuration of the strip seal shall match the configuration of the Locking Edge Rails. Open or "webbed" strip seal gland configurations are not permitted. The seal shall be sized for a minimum rated movement of 4 inches.

The strip seal shall be made continuous and shall have a minimum thickness of 1/8". The strip seal shall extend 6" beyond the edge of the approach slab on each end. The configuration of the strip seal shall match the configuration of the Locking Edge Rails. Open or "webbed" strip seal gland configurations are not permitted. The seal shall be sized for a minimum rated movement of 4 inches.

The strip seal shall be made continuous and shall have a minimum thickness of 1/8". The strip seal shall extend 6" beyond the edge of the approach slab on each end. The configuration of the strip seal shall match the configuration of the Locking Edge Rails. Open or "webbed" strip seal gland configurations are not permitted. The seal shall be sized for a minimum rated movement of 4 inches.

The strip seal shall be made continuous and shall have a minimum thickness of 1/8". The strip seal shall extend 6" beyond the edge of the approach slab on each end. The configuration of the strip seal shall match the configuration of the Locking Edge Rails. Open or "webbed" strip seal gland configurations are not permitted. The seal shall be sized for a minimum rated movement of 4 inches.

The strip seal shall be made continuous and shall have a minimum thickness of 1/8". The strip seal shall extend 6" beyond the edge of the approach slab on each end. The configuration of the strip seal shall match the configuration of the Locking Edge Rails. Open or "webbed" strip seal gland configurations are not permitted. The seal shall be sized for a minimum rated movement of 4 inches.

The strip seal shall be made continuous and shall have a minimum thickness of 1/8". The strip seal shall extend 6" beyond the edge of the approach slab on each end. The configuration of the strip seal shall match the configuration of the Locking Edge Rails. Open or "webbed" strip seal gland configurations are not permitted. The seal shall be sized for a minimum rated movement of 4 inches.
The precast bridge approach slab shall be in accordance with Section 504 of the "Standard Specifications" and shall be paid for at the contract unit price per square foot for Precast Bridge Approach Slab.

Cast-in-place substitution of Precast Bridge Approach Slab is not allowed.

The top surface of precast bridge approach slabs shall be finished similar to precast prestressed deck beams with concrete wearing surface as specified in the IDOT "Manual for Fabrication of Precast Prestressed Concrete Products." Two 1" diameter anchoring shells at the dimensions of the exterior bearing pad shall be provided for each bearing pad location. Coal included with Precast Bridge Approach Slab.

A minimum 2'-5" lifting pin shall be used to engage the lifting loops during handling.

Compressive strength of precast concrete, f'c shall be 6,000 psi. Compressive strength of precast concrete during initial lifting, f'c shall be 5,000 psi.

Notes:

- All bearing pads shall be 3/16" thick.
- Steel rods for fabric bearing pads at approach slab footing end of beams.

Expansion bearing pad shall be bonded to the slab footing end of beams.

The precast bridge approach slab shall be according to Section 504 of the IDOT "Manual for Fabrication of Precast Prestressed Concrete Products." Two 1" diameter anchoring shells at the dimensions of the exterior bearing pad shall be provided for each bearing pad location. Coal included with Precast Bridge Approach Slab.

A minimum 2'-5" lifting pin shall be used to engage the lifting loops during handling.

Compressive strength of precast concrete, f'c shall be 6,000 psi. Compressive strength of precast concrete during initial lifting, f'c shall be 5,000 psi.
The precast bridge approach slab shall be according to Section 504 of the Standard Specifications and shall be paid for at the contract unit price per square foot for Precast Bridge Approach Slab. Cast-in-place substitution of Precast Bridge Approach Slab is not allowed. The top surfaces of precast bridge approach slabs shall be finished similar to precast prestressed deck beams with concrete wearing surface as specified in the IDOT "Manual for Fabrication of Precast Prestressed Concrete Products." Two 8" x 12" fabric adjusting shims of the dimensions of the exterior bearing pad shall be provided for each bearing pad location. Cost included with Precast Bridge Approach Slab. A minimum 2 1/2" lifting pin shall be used to engage the lifting loops during handling.

Compressive strength of precast concrete, f'c, shall be 5,000 psi. Compressive strength of precast concrete during initial lifting, f'ci shall be 5,000 psi.

Notes:
- All bearing pads shall be 1/2" thick.
- Fabrication and placement of bearing pads shall be bonded to the slab footing end of beams.
- All bearing pads shall be 1/2" thick.
- Bridging bearing pads may be used.
- Expansion bearing pad shall be bonded to the approach slab footing.

For information only:
- Bottom surface of precast bridge approach slabs shall be finished similar to precast prestressed deck beams with concrete wearing surface as specified in the IDOT "Manual for Fabrication of Precast Prestressed Concrete Products." Two 8" x 12" fabric adjusting shims of the dimensions of the exterior bearing pad shall be provided for each bearing pad location. Cost included with Precast Bridge Approach Slab.
- Cast-in-place substitution of Precast Bridge Approach Slab is not allowed.

Compressive strength of precast concrete, f'c, shall be 5,000 psi. Compressive strength of precast concrete during initial lifting, f'ci shall be 5,000 psi.

Notes:
- All bearing pads shall be 1/2" thick.
- Fabrication and placement of bearing pads shall be bonded to the slab footing end of beams.
- Expansion bearing pad shall be bonded to the approach slab footing.
Notes:

The Joint opening shall be adjusted for temperature per Article 520.04 of the Standard Specifications. However, since this detail is for barrier structures, the length of bridge used to calculate the adjustment shall be equal to half the total bridge length plus the length of the bridge approach pavement.

After precast bridge approach slabs have been erected, holes shall be drilled into abutment and anchor dowels placed. Dowel holes shall be filled with non-shrink grout in two stages: the first stage is poured around precast slabs and cured according to Article 520.10(c)(3) or 520.10(c)(5) of the Standard Specifications for a minimum of 24 hours before casting the shear keys and wearing surface.

Any concrete poured monolithically with the wearing surface, such as curbs, shall not be paid for separately, but will be included in the cost of the Concrete Superstructure.

Threads shall be free of weld residue. The inside of the locking edge rail groove shall be free of weld residue. Rolled rail shown, welded rail similar.

The manufacturer's recommended installation methods shall be followed. All steel components shall be galvanized after fabrication according to Article 520.03 of the Standard Specifications.

Maximum space between rail segments at stage lines shall be 2", sealed with a suitable seal. Joints in rails within 5 ft. of curbs shall be welded. Parapet concrete shall be paid for as Concrete Superstructure. Approach footing concrete shall be paid for as Concrete Structures. The approach filling maximum applied service bearing pressure (Sbled) = 0.8 ksf. Cost of excavation for approach filling included with Concrete Structures.

For Granular Backfill for Structures and drainage treatment details, see sheet __ of__ .
The Joint opening shall be adjusted for temperature per Article 520.04 of the Standard Specifications. However, since this detail is for jointless structures, the length of bridge used to calculate the adjustment shall be equal to half the total bridge length plus the length of the bridge approach pavement.

After prestress bridge approach slabs have been erected, holes shall be drilled into abutments and anchor dowels placed. Dowel holes shall be filled with non-shrink grout in two of prestress slabs and cured according to Article Article 520.03 of the Standard Specifications for a minimum of 24 hours before casting the shear keys and wearing surface.

Any concrete poured monolithically with the wearing surface, such as curbs, shall not be poured for superstructure, but will be included in the cost of Concrete Wearing Surface, 5''.

The strip seal shall be made continuous and shall have a minimum thickness of 1/2''. The strip seal shall extend 6'' along the edge of the approach slab on each end. The configuration of the strip seal shall match the configuration of the Locking Edge Rails. Open or "webbed" strip seal gland configurations are not permitted. The gland shall be sized for a maximum rated movement of 4 inches.

The manufacturer's recommended installation methods shall be followed. All steel components shall be galvanized after fabrication according to Article Article 520.03 of the Standard Specifications.

Maximum space between rail segments at stage lines shall be 5 3/4'', sealed with a suitable sealant. Joints in rails within 10 ft. of curbs shall be welded. The actual configuration of the Locking Edge Rails and matching strip seal may vary from manufacturer to manufacturer. Flanged edge rails will not be allowed. Locking Edge Rails may be supplied at slope discontinuities and stage construction joints.

Notes:
- The Joint opening shall be adjusted for temperature per Article 520.04 of the Standard Specifications. However, since this detail is for jointless structures, the length of bridge used to calculate the adjustment shall be equal to half the total bridge length plus the length of the bridge approach pavement.
- After prestress bridge approach slabs have been erected, holes shall be drilled into abutments and anchor dowels placed. Dowel holes shall be filled with non-shrink grout in two of prestress slabs and cured according to Article Article 520.03 of the Standard Specifications for a minimum of 24 hours before casting the shear keys and wearing surface.
- Any concrete poured monolithically with the wearing surface, such as curbs, shall not be poured for superstructure, but will be included in the cost of Concrete Wearing Surface, 5''.
- The strip seal shall be made continuous and shall have a minimum thickness of 1/2''. The strip seal shall extend 6'' along the edge of the approach slab on each end. The configuration of the strip seal shall match the configuration of the Locking Edge Rails. Open or "webbed" strip seal gland configurations are not permitted. The gland shall be sized for a maximum rated movement of 4 inches.
- The manufacturer's recommended installation methods shall be followed. All steel components shall be galvanized after fabrication according to Article Article 520.03 of the Standard Specifications. However, since this detail is for jointless structures, the length of bridge used to calculate the adjustment shall be equal to half the total bridge length plus the length of the bridge approach pavement.
STRUCTURE NO.

PRECAST BRIDGE APPROACH SLAB

Sheets: 36'' min. width; 72'' max. width

Notes:
The precast bridge approach slab shall be according to Section 504 of the Standard Specifications and be paid for at the contract unit price per square foot for Precast Bridge Approach Slab.

The top surface of precast bridge approach slabs shall be finished similar to precast prestressed deck beams with concrete wearing surface as specified in the "Manual for Fabrication of Precast Prestressed Concrete Products."

Two 2'' fabric adjusting shims of the dimensions of the exterior bearing pad shall be provided for each bearing pad location. Cost included with Precast Bridge Approach Slab.

A minimum 2'' lifting pins shall be used to engage the lifting loops during handling.

Compressive strength of precast concrete, f'c shall be 5,000 psi.

Compressive strength of precast concrete during initial lifting, f'ci shall be 5,000 psi.

Bridge Approach Slab.

Expansion bearing pad shall be bonded to the slab footing end of beams.

Omit holes for fabric bearing pads at approach slab footing.

All bearing pads shall be 2'' thick.

Don't leave for fabric bearing pads at approach slab footing end of beams.

Expansion bearing pad shall be bonded to the approach slab footing.

EACH INTERIOR BEAM

BAR LIST

<table>
<thead>
<tr>
<th>Bar No.</th>
<th>Type</th>
<th>Size</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(E)</td>
<td>#4</td>
<td>D(E)</td>
<td>22''</td>
</tr>
<tr>
<td>S(E)</td>
<td>#4</td>
<td>S(E)</td>
<td>29'-8''</td>
</tr>
</tbody>
</table>

EACH EXTERIOR BEAM

BAR LIST

<table>
<thead>
<tr>
<th>Bar No.</th>
<th>Type</th>
<th>Size</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>B(E)</td>
<td>#5</td>
<td>B(E)</td>
<td>1''</td>
</tr>
<tr>
<td>S(E)</td>
<td>#9</td>
<td>S(E)</td>
<td>29'-8''</td>
</tr>
</tbody>
</table>

LIFTING LOOP DETAIL

(An alternate lifting loop with a proof load of 25,000 lbs. and utilized according to the manufacturer's recommendations may be used)

FABRIC BEARING PAD

Notes:
All bearing pads shall be 2'' thick.

Don't leave for fabric bearing pads at approach slab footing end of beams.

Expansion bearing pad shall be bonded to the approach slab footing.

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

FILE NAME = USER NAME

PLOT SCALE = PLOT DATE = CHECKED = DRAWN =

CHECKED = DRAWN = CHECKED = DRAWN =

REVISED = REVISED = REVISED = REVISED =

DEPARTMENT OF TRANSPORTATION
STATE OF ILLINOIS
FED. AID PROJECT
COUNTY
CONTRACT NO.
TOTAL SHEETS
SHEET NO.
Notes:

The Joint opening shall be adjusted for temperature per Article 580.04 of the Standard Specifications. However, since this detail is for jointless structures, the length of bridge used to calculate the adjustment shall be equal to half the false bridge length plus the length of the bridge approach pavement.

After precast bridge approach slabs have been set and concrete is set, holes shall be drilled into abutment and anchor dowels placed. Dowel holes shall be filled with non-rinse grout in lieu of precast slab and cured according to Article X501.3(b)(3) or X501.3(b)(5) of the Standard Specifications for a minimum of 24 hours before casting the shear keys and wearing surface.

Any concrete poured monolithically with the wearing surface, such as curbs, shall not be paid for separately, but will be included in the cost of Concrete Wearing Surface, 5''.

The strip seal shall be made continuous and shall have a minimum thickness of 0.25'' wide. The strip seal shall extend 6'' beyond the edge of the approach slab on each end. The configuration of the strip seal shall match the configuration of the Locking Edge Rails. Open or webbed strip seal glaze configurations are permitted. The glaze shall be sized for a maximum runout velocity of 4 inches. The Locking Edge Rails depicted are conceptual only, except for the minimum dimensions shown. The actual configuration of the Locking Edge Rails and matching strip seal may vary from manufacturer to manufacturer. Flanged edge rails will not be allowed. Locking Edge Rails may be applied at slope discontinuities and stage construction joints.

The manufacturer's recommended installation methods shall be followed. All steel components shall be galvanized after fabrication according to Article 580.03 of the Standard Specifications. Required spacing between rail segments at stage lines shall be 44 1/2'', sealed at midrib within 10 ft. or curb shall be welded.

The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Approach footing concrete shall be paid for as Concrete Structures. Parapet concrete shall be paid for as Concrete Superstructure. The approach footing concrete is shown. Cost of anchor bolt assemblies included with Concrete Superstructure. The approach footing concrete is shown. Cost of anchor bolt assemblies included with Concrete Superstructure.

The manufacturer's recommended installation methods shall be followed. All steel components shall be galvanized after fabrication according to Article 580.03 of the Standard Specifications. Required spacing between rail segments at stage lines shall be 44 1/2'', sealed at midrib within 10 ft. or curb shall be welded. Parapet concrete shall be paid for as Concrete Superstructure. Approach footing concrete shall be paid for as Concrete Structures. Approach footing concrete is shown. Cost of anchor bolt assemblies included with Concrete Superstructure.

The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Approach footing concrete shall be paid for as Concrete Structures. Parapet concrete shall be paid for as Concrete Superstructure. The approach footing concrete is shown. Cost of anchor bolt assemblies included with Concrete Superstructure.

The manufacturer's recommended installation methods shall be followed. All steel components shall be galvanized after fabrication according to Article 580.03 of the Standard Specifications. Required spacing between rail segments at stage lines shall be 44 1/2'', sealed at midrib within 10 ft. or curb shall be welded. Parapet concrete shall be paid for as Concrete Superstructure. Approach footing concrete shall be paid for as Concrete Structures. Approach footing concrete is shown. Cost of anchor bolt assemblies included with Concrete Superstructure.

The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Approach footing concrete shall be paid for as Concrete Structures. Parapet concrete shall be paid for as Concrete Superstructure. The approach footing concrete is shown. Cost of anchor bolt assemblies included with Concrete Superstructure.

The manufacturer's recommended installation methods shall be followed. All steel components shall be galvanized after fabrication according to Article 580.03 of the Standard Specifications. Required spacing between rail segments at stage lines shall be 44 1/2'', sealed at midrib within 10 ft. or curb shall be welded. Parapet concrete shall be paid for as Concrete Superstructure. Approach footing concrete shall be paid for as Concrete Structures. Approach footing concrete is shown. Cost of anchor bolt assemblies included with Concrete Superstructure.

The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Approach footing concrete shall be paid for as Concrete Structures. Parapet concrete shall be paid for as Concrete Superstructure. The approach footing concrete is shown. Cost of anchor bolt assemblies included with Concrete Superstructure.

The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Approach footing concrete shall be paid for as Concrete Structures. Parapet concrete shall be paid for as Concrete Superstructure. The approach footing concrete is shown. Cost of anchor bolt assemblies included with Concrete Superstructure.

The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Approach footing concrete shall be paid for as Concrete Structures. Parapet concrete shall be paid for as Concrete Superstructure. The approach footing concrete is shown. Cost of anchor bolt assemblies included with Concrete Superstructure.

The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Approach footing concrete shall be paid for as Concrete Structures. Parapet concrete shall be paid for as Concrete Superstructure. The approach footing concrete is shown. Cost of anchor bolt assemblies included with Concrete Superstructure.

The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Approach footing concrete shall be paid for as Concrete Structures. Parapet concrete shall be paid for as Concrete Superstructure. The approach footing concrete is shown. Cost of anchor bolt assemblies included with Concrete Superstructure.

The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Approach footing concrete shall be paid for as Concrete Structures. Parapet concrete shall be paid for as Concrete Superstructure. The approach footing concrete is shown. Cost of anchor bolt assemblies included with Concrete Superstructure.