<table>
<thead>
<tr>
<th>CELL / MODEL NAME</th>
<th>DESCRIPTION</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDE-BT6372-1</td>
<td>Superstructure Details; Expansion; Bulb T-Beam 63-72 inch beam depth; Single span</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SDE-BT6372-2</td>
<td>Superstructure Details; Expansion; Bulb T-Beam 63-72 inch beam depth; Multi-span</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SDE-I3642-1</td>
<td>Superstructure Details; Expansion; I-Beam 36-42 inch beam depth; Single span</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SDE-I3642-2</td>
<td>Superstructure Details; Expansion; I-Beam 36-42 inch beam depth; Multi-span</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SDE-I4854-1</td>
<td>Superstructure Details; Expansion; I-Beam 48-54 inch beam depth; Single span</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SDE-I4854-2</td>
<td>Superstructure Details; Expansion; I-Beam 48-54 inch beam depth; Multi-span</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SDE-IL27-1</td>
<td>Superstructure Details; Expansion; IL 27 inch beam depth; Single span</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SDE-IL27-2</td>
<td>Superstructure Details; Expansion; IL 27 inch beam depth; Multi-span</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SDE-IL36-1</td>
<td>Superstructure Details; Expansion; IL 36 inch beam depth; Single span</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SDE-IL36-2</td>
<td>Superstructure Details; Expansion; IL 36 inch beam depth; Multi-span</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SDE-IL36N-1</td>
<td>Superstructure Details; Expansion; IL 36 inch beam depth narrow top; Single span</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SDE-IL36N-2</td>
<td>Superstructure Details; Expansion; IL 36 inch beam depth narrow top; Multi-span</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SDE-IL4554-1</td>
<td>Superstructure Details; Expansion; IL 45-54 inch beam depth; Single span</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SDE-IL4554-2</td>
<td>Superstructure Details; Expansion; IL 4554 inch beam depth; Multi-span</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SDE-IL4554N-1</td>
<td>Superstructure Details; Expansion; IL 45-54 inch beam depth narrow top; Single span</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SDE-IL4554N-2</td>
<td>Superstructure Details; Expansion; IL 45-54 inch beam depth narrow top; Multi-span</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>CELL / MODEL NAME</td>
<td>DESCRIPTION</td>
<td>DATE</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>SDE-IL6372-1</td>
<td>Superstructure Details; Expansion; IL 63-72 inch beam depth; Single span</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SDE-IL6372-2</td>
<td>Superstructure Details; Expansion; IL 63-72 inch beam depth; Multi-span</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SDE-IL6372N-1</td>
<td>Superstructure Details; Expansion; IL 63-72 inch beam depth narrow top; Single span</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SDE-IL6372N-2</td>
<td>Superstructure Details; Expansion; IL 63-72 inch beam depth narrow top; Multi-span</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-BT6372-1-0</td>
<td>Superstructure; Expansion; Bulb T-Beam 63-72; Single span; No skew</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-BT6372-1-L-Greater than 30 degrees</td>
<td>Superstructure; Expansion; Bulb T-Beam 63-72; Single span; Left skew; Greater than 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-BT6372-1-L-Less than or equal to 30 degrees</td>
<td>Superstructure; Expansion; Bulb T-Beam 63-72; Single span; Left skew; Less than or equal to 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-BT6372-1-R-Greater than 30 degrees</td>
<td>Superstructure; Expansion; Bulb T-Beam 63-72; Single span; Right skew > 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-BT6372-1-R-Less than or equal to 30 degrees</td>
<td>Superstructure; Expansion; Bulb T-Beam 63-72; Single span; Right skew; Less than or equal to 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-BT6372-2-0</td>
<td>Superstructure; Expansion; Bulb T-Beam 63-72; Multi-span; No skew</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-BT6372-2-L-Greater than 30 degrees</td>
<td>Superstructure; Expansion; Bulb T-Beam 63-72; Multi-span; Left skew > 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-BT6372-2-L-Less than or equal to 30 degrees</td>
<td>Superstructure; Expansion; Bulb T-Beam 63-72; Multi-span; Left skew; Less than or equal to 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-BT6372-2-R-Greater than 30 degrees</td>
<td>Superstructure; Expansion; Bulb T-Beam 63-72; Multi-span; Right skew > 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-BT6372-2-R-Less than or equal to 30 degrees</td>
<td>Superstructure; Expansion; Bulb T-Beam 63-72; Multi-span; Right skew; Less than or equal to 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-I3654-1-0</td>
<td>Superstructure; Expansion; I-Beam 36-54; Single span; No skew</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-I3654-1-L-Greater than 30 degrees</td>
<td>Superstructure; Expansion; I-Beam 36-54; Single span; Left Skew; Greater than 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>CELL / MODEL NAME</td>
<td>DESCRIPTION</td>
<td>DATE</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>SE-I3654-1-L</td>
<td>Less than or equal to 30 degrees: Superstructure; Expansion; I-Beam 36-54; Single span; Left Skew; Less than or equal to 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-I3654-1-R</td>
<td>Greater than 30 degrees: Superstructure; Expansion; I-Beam 36-54; Single span; Right Skew; Greater than 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-I3654-1-R</td>
<td>Less than or equal to 30 degrees: Superstructure; Expansion; I-Beam 36-54; Single span; Right Skew; Less than or equal to 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-I3654-2-0</td>
<td>Superstructure; Expansion; I-Beam 36-54; Multi-span; No skew</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-I3654-2-L</td>
<td>Greater than 30 degrees: Superstructure; Expansion; I-Beam 36-54; Multi-span; Left skew; Greater than 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-I3654-2-L</td>
<td>Less than or equal to 30 degrees: Superstructure; Expansion; I-Beam 36-54; Multi-span; Left skew; Less than or equal to 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-I3654-2-R</td>
<td>Greater than 30 degrees: Superstructure; Expansion; I-Beam 36-54; Multi-span; Right skew; Greater than 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-I3654-2-R</td>
<td>Less than or equal to 30 degrees: Superstructure; Expansion; I-Beam 36-54; Multi-span; Right skew; Less than or equal to 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-IL2772N-1-0</td>
<td>Superstructure; Expansion; IL 27-72; Single span; No skew</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-IL2772N-1-L</td>
<td>Greater than 30 degrees: Superstructure; Expansion; IL 27-72 narrow top; Single span; Left Skew; Greater than 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-IL2772N-1-L</td>
<td>Less than or equal to 30 degrees: Superstructure; Expansion; IL 27-72 narrow top; Single span; Left Skew; Less than or equal to 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-IL2772N-1-R</td>
<td>Greater than 30 degrees: Superstructure; Expansion; IL 27-72 narrow top; Single span; Right Skew; Greater than 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-IL2772N-1-R</td>
<td>Less than or equal to 30 degrees: Superstructure; Expansion; IL 27-72 narrow top; Single span; Right Skew; Less than or equal to 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-IL2772N-2-0</td>
<td>Superstructure; Expansion; IL 27-72 narrow top; Multi-span; No skew</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-IL2772N-2-L</td>
<td>Greater than 30 degrees: Superstructure; Expansion; IL 27-72 narrow top; Multi-span; Left skew; Greater than 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-IL2772N-2-L</td>
<td>Less than or equal to 30 degrees: Superstructure; Expansion; IL 27-72 narrow top; Multi-span; Left skew; Less than or equal to 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>CELL / MODEL NAME</td>
<td>DESCRIPTION</td>
<td>DATE</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>SE-IL2772N-2-R-Greater than 30 degrees</td>
<td>Superstructure; Expansion; IL 27-72 narrow top; Multi-span; Right skew; Greater than 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-IL2772N-2-R-Less than or equal to 30 degrees</td>
<td>Superstructure; Expansion; IL 27-72 narrow top; Multi-span; Right skew; Less than or equal to 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-IL3672-1-0</td>
<td>Superstructure; Expansion; I-Beam 36-72; Single span; No skew</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-IL3672-1-L-Greater than 30 degrees</td>
<td>Superstructure; Expansion; IL 36-72; Single span; Left Skew; Greater than 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-IL3672-1-L-Less than or equal to 30 degrees</td>
<td>Superstructure; Expansion; IL 36-72; Single span; Left Skew; Less than or equal to 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-IL3672-1-R-Greater than 30 degrees</td>
<td>Superstructure; Expansion; IL 36-72; Single span; Right Skew; Greater than 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-IL3672-1-R-Less than or equal to 30 degrees</td>
<td>Superstructure; Expansion; IL 36-72; Single span; Right Skew; Less than or equal to 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-IL3672-2-0</td>
<td>Superstructure; Expansion; IL 36-72; Multi-span; No skew</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-IL3672-2-L-Greater than 30 degrees</td>
<td>Superstructure; Expansion; IL 36-72; Multi-span; Left Skew; Greater than 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-IL3672-2-L-Less than or equal to 30 degrees</td>
<td>Superstructure; Expansion; IL 36-72; Multi-span; Left Skew; Less than or equal to 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-IL3672-2-R-Greater than 30 degrees</td>
<td>Superstructure; Expansion; IL 36-72; Multispans; Right Skew; Greater than 30 degrees</td>
<td>10/7/2016</td>
</tr>
<tr>
<td>SE-IL3672-2-R-Less than or equal to 30 degrees</td>
<td>Superstructure; Expansion; IL 36-72; Multi-span; Right Skew; Less than or equal to 30 degrees</td>
<td>10/7/2016</td>
</tr>
</tbody>
</table>
SECTION THRU PARAPET
For insert locations see sheet of .

MINIMUM BAR LAP
(Parapet)
#6 bar = 5'-11"
#4 bar = 2'-8"

INSIDE ELEVATION OF PARAPET
1' - 2"
5"
2"
9"
2"
6"
10'

PARAPET JOINT DETAILS
Cork Joint Filler
Self-Expanding
Preformed
Polyurethane Sealant

Notes:
- Fiberglass pipe shall conform to ASTM D2996, with short-time rupture strength hoop tensile stress of 30,000 psi. minimum.
- The exterior surfaces of the fiberglass floor drains shall be pigmented by the manufacturer with a color that matches the concrete.
- The exterior surfaces of the fiberglass floor drains shall be pigmented by the manufacturer with a color that matches the concrete.
- The top portion of aluminum floor drains shall be coated to minimize reaction with wet concrete.
- The top portion of aluminum floor drains shall be coated to minimize reaction with wet concrete.
- Headed bars shall conform to ASTM A970 Class HA. Cost included with Reinforcement Bars, Epoxy Coated.
- Headed bars shall conform to ASTM A970 Class HA. Cost included with Reinforcement Bars, Epoxy Coated.
- The Polyurethane Sealant shall be non-staining gray one component non-sag elastomeric gun grade device included with Floor Drains.
- The Polyurethane Sealant shall be non-staining gray one component non-sag elastomeric gun grade device included with Floor Drains.
- The clamping device and inserts shall be galvanized according to AASHTO M 232. Cost of clamping device included with Floor Drains.
- The clamping device and inserts shall be galvanized according to AASHTO M 232. Cost of clamping device included with Floor Drains.
- The Exterior Surfaces of Fiberglass Pipe shall be pigmented by the manufacturer with a color that matches the concrete.
- The Exterior Surfaces of Fiberglass Pipe shall be pigmented by the manufacturer with a color that matches the concrete.
- Headed bars shall conform to ASTM A970 Class HA. Cost included with Reinforcement Bars, Epoxy Coated.
INSIDE ELEVATION OF PARAPET

MINIMUM BAR LAP

<table>
<thead>
<tr>
<th>Type</th>
<th>Min. Lap</th>
<th>Max. Lap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parapet</td>
<td>2"</td>
<td>4"</td>
</tr>
<tr>
<td>Pipe Clamp</td>
<td>2"</td>
<td>4"</td>
</tr>
</tbody>
</table>

Notes:
- Fiberglass pipe shall conform to ASTM D2996, with short-time rupture strength hoop tensile stress of 30,000 p.s.i. minimum.
- The exterior surfaces of the fiberglass floor drains shall be pigmented by the manufacturer with a color that matches the concrete.
- The top portion of aluminum floor drains shall be coated to minimize reaction with wet concrete.
- The top portion of aluminum floor drains shall be coated to minimize reaction with wet concrete.
- The clamping device and inserts shall be galvanized according to AASHTO M 232. Cost of clamping device included with Floor Drains.
- The top portion of aluminum floor drains shall be coated to minimize reaction with wet concrete.
- The clamping device and inserts shall be galvanized according to AASHTO M 232. Cost of clamping device included with Floor Drains.
- The top portion of aluminum floor drains shall be coated to minimize reaction with wet concrete.
- The top portion of aluminum floor drains shall be coated to minimize reaction with wet concrete.
- The top portion of aluminum floor drains shall be coated to minimize reaction with wet concrete.

SUPERSTRUCTURE DETAILS

BILL OF MATERIAL

ALUMINUM

TUBE

FIBERGLASS

PIPE

BILL OF MATERIAL

<table>
<thead>
<tr>
<th>Description</th>
<th>Unit</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinforcement Bars, Epoxy Coated</td>
<td>Cu. Yds.</td>
<td></td>
</tr>
<tr>
<td>Concrete</td>
<td>Cu. Yds.</td>
<td></td>
</tr>
<tr>
<td>Cork Joint Filler</td>
<td>Cu. Yds.</td>
<td></td>
</tr>
<tr>
<td>Polyurethane Sealant</td>
<td>Cu. Yds.</td>
<td></td>
</tr>
<tr>
<td>Backer Rod</td>
<td>Cu. Yds.</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
- Bars indicated thus 1 x 2-#8 etc. indicates 1 line of bars with 2 lengths per line.
MINIMUM BAR LAP
(Parapet)
(#4 bar) = 2'-2"
(#6 bar) = 5'-2"

SECTION THRU PARAPET
For sheet locations see sheet B."

PARAPET JOINT DETAILS

SUPERSTRUCTURE DETAILS

BILL OF MATERIAL

<table>
<thead>
<tr>
<th>SHEET</th>
<th>SHEETS</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION
MINIMUM BAR LAP
(Shaded)
#8 bar = 5'-11''
#4 bar = 2'-8''

Notes:

1. Fiber glass pipe shall conform to ASTM D2996, with short-time rupture strength hoop tensile stress of 30,000 psi. minimum.
2. The exterior surfaces of the fiber glass floor drains shall be painted by the manufacturer with a color that matches the concrete.
3. Fiberglass pipe shall conform to ASTM D2996, with short-time rupture strength hoop tensile stress of 30,000 psi. minimum.

BAR a(E)
Headed bars shall conform to ASTM A970 Class HA. Cost included with Reinforcement Bars, Epoxy Coated.

SUPERSTRUCTURE DETAILS

BILL OF MATERIAL

N/A
MINIMUM BAR LAP

1 x #8 e(E) bar, Front Face
1 x #4 e(E) bar, Back Face

BAR d(E)

BAR x(E)

**For insert locations See sheet (Mandatory)

SUPERSTRUCTURE DETAILS

BILL OF MATERIAL

Cu. Yds.
Lbs.

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

1'-0"
1'-10"
1'-2"

MINIMUM BAR LAP

1 x #8 e(E) bar, Front Face
1 x #4 e(E) bar, Back Face

BAR d(E)

BAR x(E)

**For insert locations See sheet (Mandatory)

SUPERSTRUCTURE DETAILS

BILL OF MATERIAL

Cu. Yds.
Lbs.

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

1'-0"
1'-10"
1'-2"

Notes:
*Fiberglass pipe shall conform to ASTM D2996, with short-time rupture strength hoop tensile stress of 30,000 psi. Minimum. The exterior surfaces of the fiberglass floor drains shall be pigmented by the manufacturer with a color that matches the concrete. The top portion of aluminum floor drains shall be coated to minimize reaction with wet concrete. The clamping device and inserts shall be galvanized according to AASHTO M 232. Cost of clamping device included with Floor Drains.

1. The Polyurethane Sealant shall be non-staining gray one component non-sag elastomeric gun grade device included with Floor Drains.

2. The clamping device and inserts shall be galvanized according to AASHTO M 232. Cost of clamping device included with Floor Drains.

3. The top portion of aluminum floor drains shall be coated to minimize reaction with wet concrete.

4. The exterior surfaces of the fiberglass floor drains shall be pigmented by the manufacturer with a color that matches the concrete.

5. The Polyurethane Sealant shall be non-staining gray one component non-sag elastomeric gun grade device included with Floor Drains.

6. The clamping device and inserts shall be galvanized according to AASHTO M 232. Cost of clamping device included with Floor Drains.

7. The Polyurethane Sealant shall be non-staining gray one component non-sag elastomeric gun grade device included with Floor Drains.

8. The clamping device and inserts shall be galvanized according to AASHTO M 232. Cost of clamping device included with Floor Drains.

9. The Polyurethane Sealant shall be non-staining gray one component non-sag elastomeric gun grade device included with Floor Drains.

10. The clamping device and inserts shall be galvanized according to AASHTO M 232. Cost of clamping device included with Floor Drains.

11. The Polyurethane Sealant shall be non-staining gray one component non-sag elastomeric gun grade device included with Floor Drains.

12. The clamping device and inserts shall be galvanized according to AASHTO M 232. Cost of clamping device included with Floor Drains.

13. The Polyurethane Sealant shall be non-staining gray one component non-sag elastomeric gun grade device included with Floor Drains.

14. The clamping device and inserts shall be galvanized according to AASHTO M 232. Cost of clamping device included with Floor Drains.

15. The Polyurethane Sealant shall be non-staining gray one component non-sag elastomeric gun grade device included with Floor Drains.

16. The clamping device and inserts shall be galvanized according to AASHTO M 232. Cost of clamping device included with Floor Drains.

17. The Polyurethane Sealant shall be non-staining gray one component non-sag elastomeric gun grade device included with Floor Drains.

18. The clamping device and inserts shall be galvanized according to AASHTO M 232. Cost of clamping device included with Floor Drains.
MINIMUM BAR LAP

*For insert locations see sheet of.

1 x -#4 e(E) bar, Front Face
1 x -#4 e(E) bar, Back Face
1 x -#8 e(E) bar, Front Face
1 x -#8 e(E) bar, Back Face
1 x -#8 e(E) bar, Section thru Parapet
1 x -#4 e(E) bar, Back Face
1 x -#4 e(E) bar, Front Face

INSIDE ELEVATION OF PARAPET

Typical Panel

#5 d(E) bars at 11'' cts.

Primary Joint Details

Fiberboard Sheet inserts for " " head to " " end (locate to miss strands).

Steel stud bolts, headless " " for insert end and " " for coping end, with locknuts.

Notes:

- Fiberglass pipe shall conform to ASTM D2996, with short-time rupture strength hoop tensile stress of 30,000 psi, minimum.
- The exterior surfaces of the fiberglass floor drains shall be pigmented by the manufacturer with a color that matches the concrete.
- The top portion of all aluminum floor drains shall be coated to minimize reaction with wet concrete.
- The clamping device and inserts shall be galvanized according to ASTM B 230. Cost of clamping device included in Pipe Drains.
- The 1/2" Aluminum sheet shall be ASTM B 209 alloy 3003-H14 and coated to minimize reaction with wet concrete.

For insert locations see sheet of.

1 x -#8 e(E) bar, Front Face
1 x -#8 e(E) bar, Back Face
1 x -#4 e(E) bar, Section thru Parapet
1 x -#4 e(E) bar, Back Face
1 x -#4 e(E) bar, Front Face

SUPERSTRUCTURE DETAILS

BILL OF MATERIAL

DEPARTMENT OF TRANSPORTATION
STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION
MINIMUM BAR LAP
#5 bar = 3'-6"

out to out deck

Face to face parapets

Total drop =

CROSS SECTION
(Looking)
PLAN

MINIMUM BAR LAP
-#5 bar = 3'-6"
out to out deck

CROSS SECTION
(Looking)

Notes:
- See sheet of for superstructure details end B of pilasters.
- Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.
PLAN

- 5# 5(E) bars at cts. top, each end
- 5# 5(E) bars at cts. bottom
- 5# 5(E) bars at cts. top
- 5# 5(E) bars at cts. bottom
- 3# 5(E) bars at 6" cts.
- 10 lines of bars with 3 lengths per line.
- Bars indicated thus: 20 x 3-#5 etc. indicates and Bill of Material.
- See sheet for superstructure details
- Notes:
 - Cut to fit skew and use remainder of bars in opposite end.
 - Order 5(E) & 5(E) bars full length.
 - Each end 1-#5 d(E) bar
 - Lap with 3-#5 d(E) bar showing skew type.
 - 3 x 5(E) bars at 12" cts.
 - Out to out deck
 - Top of slab
 - See sheet of for superstructure details and Bill of materials.

CROSS SECTION

- Slope %
- Total drop =
- 10-7-2016
PLAN

* Order d(E) & a(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.

MINIMUM BAR LAP
#5 bar = 3'-6"

Notes:
See sheet of for superstructure details and Bill of Materials. Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

CROSS SECTION
(Looking)
PARTIAL PLAN

NEAR PIER

CROSS SECTION
(Looking)

MINIMUM BAR LAP
-5 bar = 3'-6"

* Order d(E) & a(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.

Notes:
- See sheet of for superstructure details and Bill of Materials.
- Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

Order a(E) & a(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.

See sheet of for superstructure details and Bill of Materials.
Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

-5 bar = 3'-6"

Order a(E) & a(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.

See sheet of for superstructure details and Bill of Materials.
Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

Order a(E) & a(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.

See sheet of for superstructure details and Bill of Materials.
Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

Order a(E) & a(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.

See sheet of for superstructure details and Bill of Materials.
Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

Order a(E) & a(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.

See sheet of for superstructure details and Bill of Materials.
Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.
PARTIAL PLAN

MINIMUM BAR LAP
-#5 bar = 3'-6''

FACE TO FACE PARAPETS

Notes:
- Order a(E) & b(E) bars full length.
- Cut to fit skew and use remainder of bars in opposite end.
- Minimum Bar Lap
- Order a(E) & b(E) bars full length.
- Cut to fit skew and use remainder of bars in opposite end.
- Minimum Bar Lap

See sheet of for superstructure details, typ.
MINIMUM BAR LAP

- #5 bar = 3'-6''

PARTIAL PLAN

- "#5 b(E) bars at 6'' cts.
- #6 a(E) bars at 11'' cts.
- #5 d(E) bar at 11'' cts.
- #6 a(E) bars at 6'' cts.
- #5 a(E) headed bars at 6'' cts.
- #5 a(E) bars at 6'' cts.

Notes:

- See sheet for superstructure details and Bill of Materials. Bars indicated thus: D x 3-#5 etc., indicates 20 lines of bars with 3 lengths per line.
- Order D(E) & a(E) bars full length.
- Cut to fit skew and use remainder of bars in opposite end.
MINIMUM BAR LAP
-#5 bars at 3'-6"

PLAN
out to out deck

MINIMUM BAR LAP
-#5 bars at 3'-6"

CROSS SECTION
Looking:

Notes:
- See sheet of for superstructure details.
- Bars indicated thus: 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.
- Order #5 & #6 bars full length. Cut to fit skew and use remainder of bars in opposite end.
- Order #6 a (E) bars at top, each end.
- Order #5 a (E) bars at top, each end.
- Order #5 a (E) bars at cts. top.
- Order #5 a (E) bars at cts. bottom.
STRUCTURE NO. SE-I3654-1-R (>30°)

PLAN

MINIMUM BAR LAP
#5 bar = 3-6''

CROSS SECTION
(Looking)

Notes:
- Order #6 & #5(E) bars full length.
- Cut to fit skew and use remainder of bars in opposite end.
- Order #6 & #5(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.
- Cut to fit skew and use remainder of bars in opposite end.
- Order #6 & #5(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.
- Order #6 & #5(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.

MINIMUM BAR LAP
#5 bar = 3-6''

CROSS SECTION
(Looking)

Notes:
- Order #6 & #5(E) bars full length.
- Cut to fit skew and use remainder of bars in opposite end.
- Order #6 & #5(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.
- Order #6 & #5(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.
- Order #6 & #5(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.

MINIMUM BAR LAP
#5 bar = 3-6''

CROSS SECTION
(Looking)

Notes:
- Order #6 & #5(E) bars full length.
- Cut to fit skew and use remainder of bars in opposite end.
- Order #6 & #5(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.
- Order #6 & #5(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.
- Order #6 & #5(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.

MINIMUM BAR LAP
#5 bar = 3-6''

CROSS SECTION
(Looking)

Notes:
- Order #6 & #5(E) bars full length.
- Cut to fit skew and use remainder of bars in opposite end.
- Order #6 & #5(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.
- Order #6 & #5(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.
- Order #6 & #5(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.
PLAN

- #5 a(E) bars at cts. bottom
- #5 a(E) bars at cts. top

out to out deck

MINIMUM BAR LAP
#5 bar = 3'-6''

Notes:
- See sheet for superstructure details and Bill of Materials.
- Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

CROSS SECTION

Total drop = 1'-7''

MINIMUM BAR LAP
#5 bar = 3'-6''

out to out deck

FACE TO FACE PARAPETS

Spaces at

TOTAL DROP = 1'-7''

SLAB thickness = 2'-10''

NOTE:
- Lap with a(E) bars (Fixed)
- slope %

DEPARTMENT OF TRANSPORTATION
STATE OF ILLINOIS
SUPERSTRUCTURE NO.

FILE NAME
USER NAME

PLOT SCALE
PLOT DATE

CHECKED
DRAWN

REVISED
REVISED

DEPARTMENT
FED. AID PROJECT
COUNTY

TOTAL SHEETS
SHEET NO.
PARTIAL PLAN

MINIMUM BAR LAP
-#5 bar = 3'-6"
PARTIAL PLAN

Abut. to out deck

Face to face parapets

Total drop = 2''

Notes:
- See sheet of for superstructure details and Bill of materials.
- Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

* Order #5 & a(E) bars full length.
* Cut to fit skew and use remainder of bars in opposite end.
* Order a(E) & a(E) bars full length.

MINIMUM BAR LAP
#5 bar = 3'-6''

5'-7'' at joints in parapet

(3) x -#6 a(E) bars at cts. top

50° F.

5'-7'' Aluminum sheets

(3) x -#6 a(E) bars at cts. top

(3) x -#6 a(E) bars at cts. bottom

LAKE SUPERSTRUCTURE

1'-7'' at face to face parapets

1'-2''

5''

1'-7''

1'-2''

5''

1'-7''

1'-2''

5''

MINIMUM BAR LAP
#5 bar = 3'-6''

5'-7'' at joints in parapet

(3) x -#6 a(E) bars at cts. top

50° F.
PARTIAL PLAN

- 6#5 d(E) bars at 6" cts. (lap with a(E) bars)
- 5#5 b(E) bars at 12" cts. (bottom)
- 3#5 a(E) bars at 6" cts. (top)
- 3#5 a(E) headed bars at 6" cts. (top)
- 3#5 a(E) headed bars at 6" cts. (bottom)
- 3#5 d(E) bars at 6" cts. (top)
- 3#5 a(E) bars at 6" cts. (bottom)
- 3#5 b(E) bars at 6" cts. (top)
- 3#5 b(E) bars at 6" cts. (bottom)

Order d(E) & a(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.

MINIMUM BAR LAP
- #5 bar = 3'-6"

Notes:
- See sheet for superstructure details and Bill of materials.
- Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

CROSS SECTION

MINIMUM BAR LAP
- #5 bar = 3'-6"

Order d(E) & a(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.
PARTIAL PLAN

Top of slab
3 x -#5 b(E) bars equally spaced at 12" cts.

Structural Details:
- #5 a(E) bars at 6" cts. top, each end
- #5 a(E) bars at 6" cts. bottom

NEAR PIER
- #6 a(E) bars at 6" cts.

NEAR MIDSPAN
- #5 d(E) bars at 11" cts.

Notes:
- See sheet of for superstructure details and Bill of Materials.
- Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

Minimum Bar Lap:
#5 bar = 3'-6"
PLAN

MINIMUM BAR LAP
#5 bar = 3'-6"

FACE TO FACE PARAPETS

CROSS SECTION
Looking 1
PLAN

-**MINIMUM BAR LAP**
 - #5 bar = 3'-6"

- Order #2 & #4 bars full length. Cut to fit skew and use remainder of bars in opposite end.

- #5 a(E) bars at 12" cts.

- #5 a(E) bars at face to face parapets.

- #5 d(E) bars at 15" cts.

- #5 d(E) bars at face to face parapets.

CROSS SECTION

- Total drop = 10-7-2016

- Slope %

NOTES

- See sheet of for superstructure details and comments.

- Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

SPECIAL INSTRUCTIONS

- Order #2 & #4 bars full length. Cut to fit skew and use remainder of bars in opposite end.

- #5 a(E) bars at 12" cts.

- #5 a(E) bars at face to face parapets.

- #5 d(E) bars at 15" cts.

- #5 d(E) bars at face to face parapets.
Approximate Total Drop = 1'-7"

Notes:
- See sheet of for superstructure details and Bill of materials.
- Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.
MINIMUM BAR LAP
-#5 bar = 3'-6''

PARTIAL PLAN

CROSS SECTION
Looking 1

Notes:
See sheet of for superstructure details and Bill of Materials.
Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

* Order #6 & #8(E) bars full length.
Cut to fit show and use remainder of bars in opposite end.

MINIMUM BAR LAP
-#5 bar = 3'-6''

PARTIAL PLAN

CROSS SECTION
Looking 1

Notes:
See sheet of for superstructure details and Bill of Materials.
Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

* Order #6 & #8(E) bars full length.
Cut to fit show and use remainder of bars in opposite end.

MINIMUM BAR LAP
-#5 bar = 3'-6''

PARTIAL PLAN

CROSS SECTION
Looking 1

Notes:
See sheet of for superstructure details and Bill of Materials.
Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

* Order #6 & #8(E) bars full length.
Cut to fit show and use remainder of bars in opposite end.

MINIMUM BAR LAP
-#5 bar = 3'-6''

PARTIAL PLAN

CROSS SECTION
Looking 1

Notes:
See sheet of for superstructure details and Bill of Materials.
Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.
MINIMUM BAR LAP

- #5 bar @ 3'-6"

PARTIAL PLAN

- 1-#5 d(E) bars at 12" cts.
- 1-#6 d(E) bar along shear line
- 1-#5 d(E) bars of 10" cts.
- 1-#5 a(E) bars at 6" cts. bottom
- 1-#5 a(E) bars at 6" cts. top
- 1-#5 b(E) bars at 6" cts. top, each end
- 1-#6 d(E) bars of 6" cts. has, each end
- 1-#5 a(E) headed bars of 6" cts. between beams, each end

- 1-#5 x (E) bars at 12" cts.
- 1-#5 a (E) bars at 12" cts.
- 1-#5 b (E) bars @ 6' 6" cts. top of slab over pier, each end
- 1-#5 a (E) bars at 6' 6" cts. top of slab
- 1-#5 b (E) bars @ 6' 6" cts. to p. of slab
- 1-#5 a (E) bars at 6' 6" cts. bottom
- 1-#5 d (E) bars at 11" cts. along skew (typ.)
- 1-#5 x (E) bar bottom of slab

NEAR PIER

- 1-#5 b(E) bars at 6' 6" cts. bottom, each end
- 1-#5 a (E) bars at 6' 6" cts. top
- 1-#5 a (E) bars at 6' 6" cts. bottom

NEAR MIDSPAN

- 1-#5 d(E) bars at 10" cts.
- 1-#5 a(E) bars at 6" cts.
- 1-#5 a(E) bars at 6" cts.

FACE TO FACE PARAPETS

- 20 lines of bars with 3 lengths per line. Bars indicated thus 20 x 3-#5 etc. indicates and Bill of Material. See sheet of for superstructure details.

Notes:

- See sheet of for superstructure details and Bill of Materials.
- Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

- Order d(E) & a(E) bars full length.
- Cut to fit skew and use remainder of bars in opposite end.

- Order d(E) & a(E) bars full length.
- Cut to fit skew and use remainder of bars in opposite end.

CROSS SECTION

- Total drop =
- Spaces at

FACE TO FACE PARAPETS

- Total drop =
- Spaces at

FACE TO FACE PARAPETS

- Total drop =
- Spaces at
PLAN

MINIMUM BAR LAP
#5 bar = 3'-6''

CROSS SECTION

MINIMUM BAR LAP
#5 bar = 3'-6''

FACE TO FACE PARAPETS

20 lines of bars with 3 lengths per line. Bars indicated thus 20 x 3-#5 etc. indicates and Bill of Material.

Notes:
See sheet of for superstructure details and Bill of materials.
Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

SUPERSTRUCTURE
STRUCTURE NO.

FILE NAME

USER NAME

PLOT SCALE

PLOT DATE

CHECKED

DRAWN

CHECKED

DESIGNED

REVISED

REVISED

REVISED

DEPARTMENT OF TRANSPORTATION
STATE OF ILLINOIS

F.A. R.T.E.

SECTION

COUNTY

CONTRACT NO.

TOTAL SHEETS

SHEET NO.
MINIMUM BAR LAP
-#5 bar = 3'-6"

Order #5(E) & #5(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.

See sheet of for superstructure details and Bill of Materials. Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

Notes:
- Cut to fit skew and use remainder of bars in opposite end.
- Order #5(E) & #5(E) bars full length. Use remainder of bars in opposite end.

MINIMUM BAR LAP
-#5 bar = 3'-6"

Order #5(E) & #5(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.

See sheet of for superstructure details and Bill of Materials. Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

Notes:
- Cut to fit skew and use remainder of bars in opposite end.
- Order #5(E) & #5(E) bars full length. Use remainder of bars in opposite end.

MINIMUM BAR LAP
-#5 bar = 3'-6"

Order #5(E) & #5(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.

See sheet of for superstructure details and Bill of Materials. Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

Notes:
- Cut to fit skew and use remainder of bars in opposite end.
- Order #5(E) & #5(E) bars full length. Use remainder of bars in opposite end.

MINIMUM BAR LAP
-#5 bar = 3'-6"

Order #5(E) & #5(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.

See sheet of for superstructure details and Bill of Materials. Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

Notes:
- Cut to fit skew and use remainder of bars in opposite end.
- Order #5(E) & #5(E) bars full length. Use remainder of bars in opposite end.

MINIMUM BAR LAP
-#5 bar = 3'-6"

Order #5(E) & #5(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.

See sheet of for superstructure details and Bill of Materials. Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

Notes:
- Cut to fit skew and use remainder of bars in opposite end.
- Order #5(E) & #5(E) bars full length. Use remainder of bars in opposite end.

MINIMUM BAR LAP
-#5 bar = 3'-6"

Order #5(E) & #5(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.

See sheet of for superstructure details and Bill of Materials. Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

Notes:
- Cut to fit skew and use remainder of bars in opposite end.
- Order #5(E) & #5(E) bars full length. Use remainder of bars in opposite end.

MINIMUM BAR LAP
-#5 bar = 3'-6"

Order #5(E) & #5(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.

See sheet of for superstructure details and Bill of Materials. Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

Notes:
- Cut to fit skew and use remainder of bars in opposite end.
- Order #5(E) & #5(E) bars full length. Use remainder of bars in opposite end.

MINIMUM BAR LAP
-#5 bar = 3'-6"

Order #5(E) & #5(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.

See sheet of for superstructure details and Bill of Materials. Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

Notes:
- Cut to fit skew and use remainder of bars in opposite end.
- Order #5(E) & #5(E) bars full length. Use remainder of bars in opposite end.

MINIMUM BAR LAP
-#5 bar = 3'-6"

Order #5(E) & #5(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.

See sheet of for superstructure details and Bill of Materials. Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

Notes:
- Cut to fit skew and use remainder of bars in opposite end.
- Order #5(E) & #5(E) bars full length. Use remainder of bars in opposite end.

MINIMUM BAR LAP
-#5 bar = 3'-6"

Order #5(E) & #5(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.

See sheet of for superstructure details and Bill of Materials. Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

Notes:
- Cut to fit skew and use remainder of bars in opposite end.
- Order #5(E) & #5(E) bars full length. Use remainder of bars in opposite end.

MINIMUM BAR LAP
-#5 bar = 3'-6"

Order #5(E) & #5(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.

See sheet of for superstructure details and Bill of Materials. Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

Notes:
- Cut to fit skew and use remainder of bars in opposite end.
- Order #5(E) & #5(E) bars full length. Use remainder of bars in opposite end.

MINIMUM BAR LAP
-#5 bar = 3'-6"

Order #5(E) & #5(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.

See sheet of for superstructure details and Bill of Materials. Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

Notes:
- Cut to fit skew and use remainder of bars in opposite end.
- Order #5(E) & #5(E) bars full length. Use remainder of bars in opposite end.

MINIMUM BAR LAP
-#5 bar = 3'-6"

Order #5(E) & #5(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.

See sheet of for superstructure details and Bill of Materials. Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

Notes:
- Cut to fit skew and use remainder of bars in opposite end.
- Order #5(E) & #5(E) bars full length. Use remainder of bars in opposite end.
3. Video cameras are essential for ensuring public safety. The installation of these cameras can deter criminal activity and provide crucial evidence in the event of an incident.

4. The proposal aims to enhance public safety by installing video cameras across the city. These cameras will be strategically placed at key locations, including public transportation hubs, parks, and commercial areas.

5. The installation of video cameras is expected to significantly reduce crime rates. According to a study conducted by the city's police department, areas with video surveillance have experienced a 30% decrease in crime compared to similar areas without such systems.

6. The city will collaborate with local businesses to cover the costs of installing and maintaining the cameras. This approach ensures that the financial burden is shared among community members, promoting a sense of collective responsibility.

7. The project will be overseen by a dedicated team of city employees and monitored by independent security firms to ensure the cameras are effectively utilized.

8. The cameras will be linked to a central monitoring station, allowing real-time visual access for law enforcement officers. This feature will enable quick response times to incidents, potentially saving lives and property.

9. Local residents and business owners have expressed support for the project, recognizing the benefits it will bring to their community.

10. The city has allocated a budget of $2 million for the installation of video cameras. This funding will cover the costs of equipment, installation, and ongoing maintenance.

11. A public awareness campaign will be launched to educate the community about the benefits of video surveillance and encourage compliance with local laws.

12. The city council plans to monitor the effectiveness of the system after its installation and may consider expanding the program to additional areas based on feedback and data analysis.

13. The project aligns with the city's overall goal of creating a safer and more vibrant community for its residents and visitors.

14. The installation of video cameras is a proactive measure against crime and an investment in the long-term well-being of the community.

15. The city encourages residents to report any concerns or suggestions related to the surveillance system, ensuring that the community's input is incorporated into the ongoing improvements of the system.
MINIMUM BAR LAP
-5 bar = 3'-6"

5° F. at Skew

Notes:
- See sheet for superstructure details and Bill of Materials.
- Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

CROSS SECTION (Looking)

PLAN

OUT to OUT deck

FACE to FACE parapets

Total drop =

SE-IL3672-1-R(30°) 10-7-2016
PARTIAL PLAN

MINIMUM BAR LAP
#5 bar = 3'-6"

NEAR PIER

CROSS SECTION

Notes:
- See sheet for superstructure details and Bill of materials.
- Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

Order #6 & #8 bars full length. Cut to fit skew and use remainder of bars in opposite end.

Order a(E) & a(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.

MINIMUM BAR LAP
#5 bar = 3'-6"

NEAR PIER

CROSS SECTION

Notes:
- See sheet for superstructure details and Bill of materials.
- Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

Order #6 & #8 bars full length. Cut to fit skew and use remainder of bars in opposite end.

Order a(E) & a(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.
PARTIAL PLAN

- 3 x #5 b(E) bars equally spaced at 12'' cts.
- 1-#5 a(E) bars at 6'' cts. bottom
- 1-#5 a(E) bars at 6'' cts. top

MINIMUM BAR LAP
- #5 bar = 3-6''

Top of slab

NEAR PIER

CROSS SECTION (Looking)

TOTAL DROP =

FACE TO FACE PARAPETS

1'-7''
1'-7''

1'-2''
1'-2''

1'-7''
1'-7''

10-7-2016