<table>
<thead>
<tr>
<th>CELL / MODEL NAME</th>
<th>DESCRIPTION</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDE-BT6372-1</td>
<td>Superstructure Details; Expansion; Bulb T-Beam 63-72 inch beam depth; Single span</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SDE-BT6372-2</td>
<td>Superstructure Details; Expansion; Bulb T-Beam 63-72 inch beam depth; Multi-span</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SDE-I3642-1</td>
<td>Superstructure Details; Expansion; I-Beam 36-42 inch beam depth; Single span</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SDE-I3642-2</td>
<td>Superstructure Details; Expansion; I-Beam 36-42 inch beam depth; Multi-span</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SDE-I4854-1</td>
<td>Superstructure Details; Expansion; I-Beam 48-54 inch beam depth; Single span</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SDE-I4854-2</td>
<td>Superstructure Details; Expansion; I-Beam 48-54 inch beam depth; Multi-span</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SDE-IL27-1</td>
<td>Superstructure Details; Expansion; IL 27 inch beam depth; Single span</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SDE-IL27-2</td>
<td>Superstructure Details; Expansion; IL 27 inch beam depth; Multi-span</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SDE-IL36-1</td>
<td>Superstructure Details; Expansion; IL 36 inch beam depth; Single span</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SDE-IL36-2</td>
<td>Superstructure Details; Expansion; IL 36 inch beam depth; Multi-span</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SDE-IL36N-1</td>
<td>Superstructure Details; Expansion; IL 36 inch beam depth narrow top; Single span</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SDE-IL36N-2</td>
<td>Superstructure Details; Expansion; IL 36 inch beam depth narrow top; Multi-span</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SDE-IL4554-1</td>
<td>Superstructure Details; Expansion; IL 45-54 inch beam depth; Single span</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SDE-IL4554-2</td>
<td>Superstructure Details; Expansion; IL 4554 inch beam depth; Multi-span</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SDE-IL4554N-1</td>
<td>Superstructure Details; Expansion; IL 45-54 inch beam depth narrow top; Single span</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SDE-IL4554N-2</td>
<td>Superstructure Details; Expansion; IL 45-54 inch beam depth narrow top; Multi-span</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>CELL / MODEL NAME</td>
<td>DESCRIPTION</td>
<td>DATE</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>SDE-IL6372-1</td>
<td>Superstructure Details; Expansion; IL 63-72 inch beam depth; Single span</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SDE-IL6372-2</td>
<td>Superstructure Details; Expansion; IL 63-72 inch beam depth; Multi-span</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SDE-IL6372N-1</td>
<td>Superstructure Details; Expansion; IL 63-72 inch beam depth narrow top; Single span</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SDE-IL6372N-2</td>
<td>Superstructure Details; Expansion; IL 63-72 inch beam depth narrow top; Multi-span</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SE-BT6372-1-0</td>
<td>Superstructure; Expansion; Bulb T-Beam 63-72; Single span; No skew</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SE-BT6372-1-L</td>
<td>Superstructure; Expansion; Bulb T-Beam 63-72; Single span; Left skew; Greater than 30 degrees</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SE-BT6372-1-L</td>
<td>Superstructure; Expansion; Bulb T-Beam 63-72; Single span; Left skew; Less than or equal to 30 degrees</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SE-BT6372-1-R</td>
<td>Superstructure; Expansion; Bulb T-Beam 63-72; Single span; Right skew > 30 degrees</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SE-BT6372-1-R</td>
<td>Superstructure; Expansion; Bulb T-Beam 63-72; Single span; Right skew; Less than or equal to 30 degrees</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SE-BT6372-2-0</td>
<td>Superstructure; Expansion; Bulb T-Beam 63-72; Multi-span; No skew</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SE-BT6372-2-L</td>
<td>Superstructure; Expansion; Bulb T-Beam 63-72; Multi-span; Left skew > 30 degrees</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SE-BT6372-2-L</td>
<td>Superstructure; Expansion; Bulb T-Beam 63-72; Multi-span; Left skew; Less than or equal to 30 degrees</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SE-BT6372-2-R</td>
<td>Superstructure; Expansion; Bulb T-Beam 63-72; Multi-span; Right skew > 30 degrees</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SE-BT6372-2-R</td>
<td>Superstructure; Expansion; Bulb T-Beam 63-72; Multi-span; Right skew; Less than or equal to 30 degrees</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SE-I3654-1-0</td>
<td>Superstructure; Expansion; I-Beam 36-54; Single span; No skew</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SE-I3654-1-L</td>
<td>Superstructure; Expansion; I-Beam 36-54; Single span; Left Skew; Greater than 30 degrees</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>CELL / MODEL NAME</td>
<td>DESCRIPTION</td>
<td>DATE</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>SE-I3654-1-L</td>
<td>Less than or equal to 30 degrees</td>
<td>Superstructure; Expansion; I-Beam 36-54; Single span; Left Skew; Less than or equal to 30 degrees</td>
</tr>
<tr>
<td>SE-I3654-1-R</td>
<td>Greater than 30 degrees</td>
<td>Superstructure; Expansion; I-Beam 36-54; Single span; Right Skew; Greater than 30 degrees</td>
</tr>
<tr>
<td>SE-I3654-1-R</td>
<td>Less than or equal to 30 degrees</td>
<td>Superstructure; Expansion; I-Beam 36-54; Single span; Right Skew; Less than or equal to 30 degrees</td>
</tr>
<tr>
<td>SE-I3654-2-0</td>
<td>Superstructure; Expansion; I-Beam 36-54; Multi-span; No skew</td>
<td></td>
</tr>
<tr>
<td>SE-I3654-2-L</td>
<td>Greater than 30 degrees</td>
<td>Superstructure; Expansion; I-Beam 36-54; Multi-span; Left skew; Greater than 30 degrees</td>
</tr>
<tr>
<td>SE-I3654-2-L</td>
<td>Less than or equal to 30 degrees</td>
<td>Superstructure; Expansion; I-Beam 36-54; Multi-span; Left skew; Less than or equal to 30 degrees</td>
</tr>
<tr>
<td>SE-I3654-2-R</td>
<td>Greater than 30 degrees</td>
<td>Superstructure; Expansion; I-Beam 36-54; Multi-span; Right skew; Greater than 30 degrees</td>
</tr>
<tr>
<td>SE-I3654-2-R</td>
<td>Less than or equal to 30 degrees</td>
<td>Superstructure; Expansion; I-Beam 36-54; Multi-span; Right skew; Less than or equal to 30 degrees</td>
</tr>
<tr>
<td>SE-IL2772N-1-0</td>
<td>Superstructure; Expansion; IL 27-72; Single span; No skew</td>
<td></td>
</tr>
<tr>
<td>SE-IL2772N-1-L</td>
<td>Greater than 30 degrees</td>
<td>Superstructure; Expansion; IL 27-72 narrow top; Single span; Left Skew; Greater than 30 degrees</td>
</tr>
<tr>
<td>SE-IL2772N-1-L</td>
<td>Less than or equal to 30 degrees</td>
<td>Superstructure; Expansion; IL 27-72 narrow top; Single span; Left Skew; Less than or equal to 30 degrees</td>
</tr>
<tr>
<td>SE-IL2772N-1-R</td>
<td>Greater than 30 degrees</td>
<td>Superstructure; Expansion; IL 27-72 narrow top; Single span; Right Skew; Greater than 30 degrees</td>
</tr>
<tr>
<td>SE-IL2772N-1-R</td>
<td>Less than or equal to 30 degrees</td>
<td>Superstructure; Expansion; IL 27-72 narrow top; Single span; Right Skew; Less than or equal to 30 degrees</td>
</tr>
<tr>
<td>SE-IL2772N-2-0</td>
<td>Superstructure; Expansion; IL 27-72 narrow top; Multi-span; No skew</td>
<td></td>
</tr>
<tr>
<td>SE-IL2772N-2-L</td>
<td>Greater than 30 degrees</td>
<td>Superstructure; Expansion; IL 27-72 narrow top; Multi-span; Left skew; Greater than 30 degrees</td>
</tr>
<tr>
<td>SE-IL2772N-2-L</td>
<td>Less than or equal to 30 degrees</td>
<td>Superstructure; Expansion; IL 27-72 narrow top; Multi-span; Left skew; Less than or equal to 30 degrees</td>
</tr>
<tr>
<td>CELL / MODEL NAME</td>
<td>DESCRIPTION</td>
<td>DATE</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>SE-IL2772N-2-R-Greater than 30</td>
<td>Superstructure; Expansion; IL 27-72 narrow top; Multi-span; Right skew; Greater than 30 degrees</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>degrees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE-IL2772N-2-R-Less than or</td>
<td>Superstructure; Expansion; IL 27-72 narrow top; Multi-span; Right skew; Less than or equal to 30 degrees</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>equal to 30 degrees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE-IL3672-1-0</td>
<td>Superstructure; Expansion; I-Beam 36-72; Single span; No skew</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SE-IL3672-1-L-Greater than 30</td>
<td>Superstructure; Expansion; IL 36-72; Single span; Left Skew; Greater than 30 degrees</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>degrees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE-IL3672-1-L-Less than or equal</td>
<td>Superstructure; Expansion; IL 36-72; Single span; Left Skew; Less than or equal to 30 degrees</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>to 30 degrees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE-IL3672-1-R-Greater than 30</td>
<td>Superstructure; Expansion; IL 36-72; Single span; Right Skew; Greater than 30 degrees</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>degrees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE-IL3672-1-R-Less than or equal</td>
<td>Superstructure; Expansion; IL 36-72; Single span; Right Skew; Less than or equal to 30 degrees</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>to 30 degrees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE-IL3672-2-0</td>
<td>Superstructure; Expansion; IL 36-72; Multi-span; No skew</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SE-IL3672-2-L-Greater than 30</td>
<td>Superstructure; Expansion; IL 36-72; Multi-span; Left Skew; Greater than 30 degrees</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>degrees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE-IL3672-2-L-Less than or equal</td>
<td>Superstructure; Expansion; IL 36-72; Multi-span; Left Skew; Less than or equal to 30 degrees</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>to 30 degrees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE-IL3672-2-R-Greater than 30</td>
<td>Superstructure; Expansion; IL 36-72; Multi-span; Right Skew; Greater than 30 degrees</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>degrees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE-IL3672-2-R-Less than or equal</td>
<td>Superstructure; Expansion; IL 36-72; Multi-span; Right Skew; Less than or equal to 30 degrees</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>to 30 degrees</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Notes:
Fiberglass pipe shall conform to ASTM D2996, with short-time rupture strength hoop tensile stress of 30,000 p.s.i. minimum.
The exterior surfaces of the fiberglass floor drains shall be pigmented by the manufacturer with a color that matches the concrete.
The top portion of aluminum floor drains shall be coated to minimize reaction with wet concrete.
The clamping device and inserts shall be galvanized according to AASM B 232. Cost of clamping device included with Floor Drains.
The Polyurethane Sealant shall be non-staining gray one-component non-sag elastomeric gun grade meeting the requirements of ASTM C-920, Type S, Grade NS, Class 25. Use T with a 3/8 backer rod.
The 3/8" Preformed Self-Expanding Cork Joint Filler Shall be according to Article 1051.07 of the Std. Spec. Cost included with Concrete Superstructure.

Headed bars shall conform to ASTM A416 with threaded attachment, Class H4, and reinforcement bars conforming to ASTM A706. Cost included with Reinforcement Bars, Epoxy Coated.
FIBERGLASS PIPE

- 5/8" x 8" Fiberglass Pipe
- 5/8" x 8" Fiberglass Joint Filler
- S.D. Aluminum Tube
- 6" Diameter Fiberglass Pipe

ALUMINUM TUBE

- 6" Diameter Pipe
- 1" Diameter Pipe
- 1 1/2" Diameter Pipe

SECTION A-A

- Top Plan (Showing Aluminum Tube)

TOP PLAN

- Parapet Joint Details
- Parapet Joint Details (Mandatory)
- Parapet Joint Details (Optional)

MINIMUM BAR LAP

- (Parapet) #4 bar = 2'-5"
- #8 bar = 3'-11"

SUPERSTRUCTURE DETAILS

- Bar lap = 12" at 24" on center

BILL OF MATERIAL

- Concrete:
 - Type S, Grade NS, Class 25
 - Fiber content: 0.7%
 - Stress: 20,000 psi minimum

- Reinforcement Bars:
 - Deformed, in accordance with ASTM A970
 - Class HA

- Polyurethane Sealant: Non-staining, gray, one-component, non-sag, elastomeric gun grade

- Cork Joint Filler: Preformed, self-expanding

- Aluminum Joint:
 - Full height

NOTES

- The Polyurethane Sealant shall be non-staining gray, one-component, non-sag, elastomeric gun grade.
- The top portion of aluminum floor drains shall be coated to minimize reaction with wet concrete.
- The exterior surfaces of the fiberglass floor drains shall be pigmented by the manufacturer with a color that matches the concrete.
- The Polyurethane Sealant shall be non-slacking gray one component non-sag elastomeric gun grade meeting the requirements of ASTM C-920, Type S, Grade NS, Class 25. Use T with a 1/2" backer rod.
- The #10 Preformed Self-Expanding Cork Joint Filler shall be according to Article 1051.07 of the Standards.
- The Polyurethane Sealant shall be non-staining gray one component non-sag elastomeric gun grade meeting the requirements of ASTM C-920, Type S, Grade NS, Class 25. Use T with a 1/2" backer rod.
MINIMUM BAR LAP

```
(Parapet) #4 bar = 2'-5"
#8 bar = 3'-11"
```

Notes:
- Fiberglass pipe shall conform to ASTM D2996, with short-time rupture strength hoop tensile stress of 30,000 psi. Minimum.
- The exterior surfaces of the fiberglass floor drains shall be pigmented by the manufacturer with a color that matches the concrete.
- The top portion of aluminum floor drains shall be coated to minimize reaction with wet concrete.
- The clamping device and inserts shall be galvanized according to AASHTO M 232. Cost of clamping device included with Floor Drains.

PARAPET JOINT DETAILS

- The Prefabricated Cork Joint Filler shall be according to Article 1051.07 of the Std. Ins.
- The top portion of aluminum floor drains shall be coated to minimize reaction with wet concrete.
- The exterior surfaces of the fiberglass floor drains shall be pigmented by the manufacturer with a color that matches the concrete.
- The Polyurethane Sealer shall be non-sag, elastic, grade meeting requirements of ASTM C-920, Type 3, Grade NS, Class 25. Use T with a 1/8" backer rod.
- The Aluminum sheet shall be ASTM B 209 alloy 3003-H14 and coated to minimize reaction with wet concrete.
- Fiberglass pipe shall conform to ASTM D2996, with short-time rupture strength hoop tensile stress of 30,000 psi. Minimum.
- Reinforcement Bars, Epoxy Coated. Cost included with Reinforcement Bars, Epoxy Coated.
INSIDE ELEVATION OF PARAPET

MINIMUM BAR LAP (Parapet)
#8 bar = 2'-5" #8 bar = 3'-12"

SUPERSTRUCTURE DETAILS

SECTION A-A
For insert locations See sheet of

FIBERGLASS PIPE
6" Ø x 8' Fiberglass Pipe
6" OD Aluminum Tube
6" Ø Pipe Clamp
6" Ø Fiberglass Pipe
1/2" Aluminum sheet
1/2" Backer Rod
1/2" Fabric Pipe
1/4" Stud bolts
1/4" Pipe Clamp
1/4" Fiberglass
Alum. Bar

BAR a(E)
BAR x(E)
BAR s(E)
BAR b(E)
1/4"Ø Backer Rod
1/4"Ø Slab Joint filler

PARAPET JOINT DETAILS

Notes:
The Polyurethane Sealant shall be non-staining gray one component non-sag elastomeric gun grade
to minimize reaction with wet concrete. Cost included with Concrete Superstructure.
The exterior surfaces of the Fiberglass floor drains shall be pigmented by the manufacturer with
color that matches the concrete.
The Polyurethane Sealant shall be non-staining gray one component non-sag elastomeric gun grade
with short-time rupture strength hoop tensile stress of 30,000 p.s.i. minimum.
The Polyurethane Sealant shall be non-staining gray one component non-sag elastomeric gun grade
meeting the requirements of ASTM C-920, Type S, Grade NS, Class 25. Use 1 with a 1/4" Backer Rod.
The Polyurethane Sealant shall be non-staining gray one component non-sag elastomeric gun grade
meets the requirements of ASTM C-920, Type S, Grade NS, Class 25. Use 1 with a 1/4" Backer Rod.
The Polyurethane Sealant shall be non-staining gray one component non-sag elastomeric gun grade
meets the requirements of ASTM C-920, Type S, Grade NS, Class 25. Use 1 with a 1/4" Backer Rod.

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

BILL OF MATERIAL

SUPERSTRUCTURE DETAILS

BILL OF MATERIAL

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION
MINIMUM BAR LAP

(Bars)

- #4 bar = 2'-5"
- #8 bar = 3'-11"

SECTIONS THRU PARAPET

For insert locations see sheet of.

- Top plan showing aluminum tube.

SUPERSTRUCTURE DETAILS

BILL OF MATERIAL

- Superstructure details
- Structure No.
- Cu. Yds.
- Lbs.
- Lbs.
- F.A.
- Rt.
- Ave.
- Cu. Ft.

Notes:

- Fiber glass pipe shall conform to ASTM D2996, with short time rupture strength hoop tensile stress of 30,000 p.s.i. minimum.
- The exterior surfaces of the fiber glass floor drains shall be pigmented by the manufacturer with a color that matches the concrete.
- The top portion of aluminum floor drains shall be coated to minimize reaction with wet concrete.
- The Polyurethane Sealant shall be non-staining gray one component non-sag elastomeric gun grade meeting the requirements of ASTM C-920, Type 5, Grade NS, Class 25. Use T with a % backer rod.
- The Polyurethane Sealant shall be non-staining gray one component non-sag elastomeric gun grade.
- The top portion of aluminum floor drains shall be coated to minimize reaction with wet concrete.
- The Polyurethane Sealant shall be non-staining gray one component non-sag elastomeric gun grade.
- The Polyurethane Sealant shall be non-staining gray one component non-sag elastomeric gun grade.
- The Polyurethane Sealant shall be non-staining gray one component non-sag elastomeric gun grade.
- The Polyurethane Sealant shall be non-staining gray one component non-sag elastomeric gun grade.
- The Polyurethane Sealant shall be non-staining gray one component non-sag elastomeric gun grade.
- The Polyurethane Sealant shall be non-staining gray one component non-sag elastomeric gun grade.
- The Polyurethane Sealant shall be non-staining gray one component non-sag elastomeric gun grade.

SUPERSTRUCTURE DETAILS

BILL OF MATERIAL

- Superstructure details
- Structure No.
- Cu. Yds.
- Lbs.
- Lbs.
- F.A.
- Rt.
- Ave.
- Cu. Ft.
MINIMUM BAR LAP
(F(parapet)
#4 bar = 2'-5"
#8 bar = 3'-11"

INSIDE ELEVATION OF PARAPET

MINIMUM BAR LAP
(F(parapet)
#4 bar = 2'-5"
#8 bar = 3'-11"

SUPERSTRUCTURE
BILL OF MATERIAL

Notes:
Fiberglass pipe shall conform to ASTM D2996, with short-time rupture strength hoop tensile stress of 39,000 p.s.i. minimum.
The exterior surfaces of the fiberglass floor drains shall be pigmented by the manufacturer with a color that matches the concrete.
The top portion of aluminum floor drains shall be coated to minimize reaction with wet concrete.
The clamping device and inserts shall be galvanized according to AASHTO M 232. Cost of clamping device included with Floor Drains.
The Polyurethane Sealant shall be non-staining gray one component non-sag elastomeric gun grade meeting the requirements of ASTM C-920, Type S, Grade NS, Class 25. Use T with a 9" barker rod.
The 1/2" Preformed Self-Expanding Cork Joint Filler shall be according to Article 1051.07 of the Std. Spec. Cost included with Concrete Superstructure.
Headed bars shall conform to ASTM A810 with threaded attachment; Class HA, and reinforcement bars conforming to ASTM A706. Cost included with Reinforcement Bars, Epoxy Coated.

DEPARTMENT OF TRANSPORTATION
STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION
PLAN

MINIMUM BAR LAP
#5 bar = 3'-6"

CROSS SECTION
(Looking)
MINIMUM BAR LAP

#5 bar = 3'-6"

"Order #5(E) & #6(E) bars full length. Cut to fit skew and use remainder of bars in opposite end."

See sheet of for superstructure details and Bill of Material. Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

Notes:
- See sheet of for superstructure details and Bill of Material.
- Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

PLAN

CROSS SECTION

(Looking)

TOTAL DROP =

#5 b(E) bars at cts.

#5 b(E) bars at cts.
MINIMUM BAR LAP
\#5 bar = 3'-6"

PLAN

Out to out deck

Face to face parapets

CROSS SECTION

(Looking)

Notes:
See sheet of for superstructure details
and Bill of Material.
Bars indicated thus 20 x 3-\#5 etc. indicates
20 lines of bars with 3 lengths per line.

* Order \#61 & \#5(E) bars full length.
Cut to fit skew and use remainder
of bars in opposite end.

Order \#5(E) & \#5(E) bars full length.
Cut to fit skew and use remainder
of bars in opposite end.

TOTAL DROP =
MINIMUM BAR LAP

#5 bar = 3'-6"

PLAN

CROSS SECTION

Notes:

See sheet of for superstructure details and Bill of Material.
Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

148x451 1'-7" 5" 1'-2" 1'-7" 5" 1'-2"

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

SUPERSTRUCTURE STRUCTURE NO.

FILE NAME = USER NAME =
PLOT SCALE = PLOT DATE =
CHECKED = DRAWN =
CHECKED = DESIGNED =
REVISED = REVISED = REVISED = REVISED =

DEPARTMENT OF TRANSPORTATION
STATE OF ILLINOIS
F.A. RTE.
SECTION ILLINOIS
FED. AID PROJECT
CONTRACT NO.
TOTAL SHEETS SHEET NO.

TOTAL DROP =

Total drop =

SE-BT6372-1-R(≤30°) 2-17-2017
STRUCTURE NO.

SUPERSTRUCTURE

end to end deck

NEAR PIER

PARTIAL PLAN

MINIMUM BAR LAP
#5 bar = 3'-0"
Pier

Top of slab

- 3 x #5 b(E) bars equally spaced at ±12" cts.

Skew to top of slab

- 3 x #5 a(E) bars at cts. bottom

Out to out deck

- #5 a1(E) bars at cts. bottom

End to end deck

- #5 a(E) bars at cts. top

Cross section of slab

- 3 x #5 a(E) bars at cts. top

End to end deck

- 3-# 5 x 1 (E) bars at 12" cts.

Partial plan

- Minimum bar lap

 - #5 bar = 3'-6"

- Order #6 & #8(E) bars full length.
 - Cut to fit skew and use remainder of bars in opposite end.

Notes:

- See sheet of superstructure details, typ.
- See sheet of bar details, typ.
- See sheet of joint block, typ.
- See sheet of Bill of Material.
- Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

Notes:

- Order #6 & #8(E) bars at ±6" cts. top of slab over pier joints in parapet.

Total drop =

50°F.

Face to face parapets

Slopes at

Spaces at

Near pier

Near midspan

CROSS SECTION

PREPARED BY

CHECKED BY

DRAWN BY

REvised BY

STATE OF ILLINOIS

Department of Transportation

SUPERSTRUCTURE NO.

CONTRACT NO.

GREEN RIVER CLAYTON, MO.

PLOT DATE

CHECKED

DRAWN

REVISED

FILE NAME

USER NAME

PLOT SCALE

PLOT NO.

TOTAL SHEETS

SHEET NO.

Feder. Aid Project

County

Section
MINIMUM BAR LAP

#5 bar = 3'-6"

PARTIAL PLAN

Notes:
See sheet of for superstructure details and Bill of Material.
Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.
MINIMUM BAR LAP

#5 bar = 3'-6"

1-#5 d1(E) bar
along skew (typ.)

PARTIAL PLAN

NEAR PIER

CROSS SECTION

NEAR MIDSPAN

Notes:
See sheet of for superstructure details
and Bill of Material.
Bars indicated thus 20 x 3-#5 etc. indicates
20 lines of bars with 3 lengths per line.

Order #5 & #6(E) bars full length.
Cut to fill skew and use remainder
of bars in opposite end.

MINIMUM BAR LAP

#5 bar = 3'-6"

1-#5 d1(E) bar
along skew (typ.)

PARTIAL PLAN

NEAR PIER

CROSS SECTION

NEAR MIDSPAN

Notes:
See sheet of for superstructure details
and Bill of Material.
Bars indicated thus 20 x 3-#5 etc. indicates
20 lines of bars with 3 lengths per line.

Order #5 & #6(E) bars full length.
Cut to fill skew and use remainder
of bars in opposite end.
MINIMUM BAR LAP
\[\#5 \text{ bar} = 3'-6" \]

Order \#5(E) & \#5(E) bars full length. Cut to fit skew and use remainder of bars in opposite end.

Cut to fit skew and use remainder of bars in opposite end.

See sheet of for superstructure details, typ.

Notes:
See sheet of for superstructure details and Bill of Material.
Bars indicated thus 20 x 3-\#5 etc. indicates 20 lines of bars with 3 lengths per line.

PLAN

out to out deck

FACE TO FACE PARAPETS

CROSS SECTION

(Typical in each end)

\#5 \text{ bar} = 3'-6"
STRUCTURE NO.

MINIMUM BAR LAP
#5 bar = 3'-6"

PLAN

out to out deck

FACE TO FACE PARAPETS

CROSS SECTION

(looking)

Notes:
See sheet of for superstructure details

and Bill of Material.
Bars indicated thus 20 x 3-#5 etc. indicates
20 lines of bars with 3 lengths per line.
MINIMUM BAR LAP

#5 bar = 3'-6"

PLAN

CROSS SECTION (Looking)

Notes: See sheet of for superstructure details and Bill of Material.
Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

-#5 (E) bars at cts. top, each end
1-#5 d1(E) bars at 11" cts.
top, each end
-#5 a(E) bars at cts. bottom
-#5 a1(E) bars at cts. bottom
-#5 a(E) bars at cts. top
-#5 a1(E) bars at cts. top

#5 bar = 3'-6"

end to end deck

out to out deck

Face to Face parapets

Total drop =

Spaces at

Top between beams

See sheet of for superstructure details.
Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

Order #5(E) & #5(E) bars full length.
Cut to fit skew and use remainder of bars in opposite end.

Order a(E) & a1(E) bars full length.

See sheet of for superstructure details.
Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

Order a(E) & a1(E) bars full length.
Cut to fit skew and use remainder of bars in opposite end.

Order a(E) & a1(E) bars full length.
Cut to fit skew and use remainder of bars in opposite end.

Order a(E) & a1(E) bars full length.
Cut to fit skew and use remainder of bars in opposite end.
PLAN

MINIMUM BAR LAP

#5 bar = 3'-6"

Notes:

See sheet of for superstructure details and Bill of Material.
Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

CROSS SECTION

(looking)
MINIMUM BAR LAP

#5 bar = 3'-6"
SUPERSTRUCTURE
~ Pier
top of slab
3 x #5 b(E) bars
Equally spaced at |12'' cts. out to out deck

Skew° to p of slab
x #5 b(E) bars equally spaced at |12'' cts.

1'-7'' 1'-2'' 5''

~
* -#5 a1(E) bars at cts. bottom
* -#5 a(E) bars at cts. top
4-# a5(E) bars at 6'' cts. top, each end
to end deck
-#5 d1(E) bars at 11'' cts. cross section. bottom of slab
-#5 b2(E) bars spaced as shown in top, each end
-#5 x1(E) bars at 12'' cts. bottom between beams, each end
3-# a3(E) headed bars at 6'' cts. each end
1-# a4(E) bar, bottom

CROSS SECTION

PARTIAL PLAN

MINIMUM BAR LAP
#5 bar = 3'-6''

Notes:
See sheet of for superstructure details and Bill of Material.
Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

* Order #E1 & #E3 bars full length.
Cut to fit skew and use remainder of bars in opposite end.

50° F.
Joints in parapet
Aluminum sheet
Lap with a(E) bars

SAE-13654-2-U(>30°) 2-17-2017
MINIMUM BAR LAP

#5 bar = 3'-6"
* Order #E1 & #E1(E) bars full length.
 Cut to fit skew and use remainder of bars in opposite end.
 Note: See sheet of for superstructure details.

MINIMUM BAR LAP

#5 bar = 3'-6"
Say sheet of for superstructure details.

Notes: See sheet of for superstructure details and Bill of Material.

Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.
MINIMUM BAR LAP
#5 bar = 3'-6"

Order #5 and #8 bars full length. Cut to fit skew and use remainder of bars in opposite end.

Notes:
- See sheet of for superstructure details and Bill of Material. Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.
Notes:

See sheet of for superstructure details and Bill of Material.

Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

CROSS SECTION

(looking from east)

PARTIAL PLAN

out to out deck

MINIMUM BAR LAP

#5 bar = 3'-6"
MINIMUM BAR LAP

#5 bar = 3'-6''

Notes:
- Order #61 & #6(E) bars full length.
- Cut to fit skew and use remainder of bars in opposite end.

Order a(E) & a1(E) bars full length.
20 lines of bars with 3 lengths per line.
Bars indicated thus 20 x 3-#5 etc. indicates and Bill of Material.

See sheet of for superstructure details
and Bill of Material.
Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

Total drop =
-#5 a(E) bars at cts. top

MINIMUM BAR LAP
#5 bar = 3'-8"

PARTIAL PLAN
out to out deck
end to end deck

Notes:
See sheet , for superstructure details
Bars indicated thus 20 x 3-#5 etc. indicates
20 lines of bars with 3 lengths per line.

Total drop =

CROSS SECTION
(Looking)
PLAN

MINIMUM BAR LAP
#5 bar = 3'-6"

CROSS SECTION
(looking)
Superstructure Details:

- **End to End Deck**:
 - #5 A1(E) bars at cts. bottom
 - #5 A(E) bars at cts. top
- **Top of Slab**:
 - 3 x #5 B(E) bars
- **Out to Out Deck**:
 - 1'-7" face to face parapets

Notes:
- Order #5(A) & #5(A1) bars full length.
- Cut to fit skew and use remainder of bars in opposite end.
- See sheet of for superstructure details.
- Cut to fit skew and use remainder of bars in opposite end.
- See sheet of for superstructure details.

Minimum Bar Lap
- #5 bar = 3'-6"
-#5 a1(E) bars at cts. bottom
-#5 a(E) bars at cts. top
3 x -#5 b(E) bars
-#5 d1(E) bars at 11" cts.
-#5 d(E) bars at cts. top
-#5 a(E) bars at cts. bottom
-#5 d(E) bars at cts. top
-#5 d(E) bars at cts. bottom
4 x -#5 b1(E) bars equally spaced at ±12" cts.
-#5 a(E) bars at cts. bottom
-#5 a(E) bars at cts. top
-#5 a1(E) bars at cts. bottom
-#5 a1(E) bars at cts. top
3-#5 a3(E) headed bars at 6" cts.
3-#5 a4(E) headed bars at 6" cts.
3-#5 b(E) bars at 12" cts.
2 x -#5 b(E) bars (top of slab)
2-#5 b(E) bars (Fixed)
2-#5 b(E) bars (Expansion)
1-#5 d1(E) bar
1-#5 d(E) bar, bottom (Fixed)
1-#5 d(E) bar, bottom, added side
Spaces at
Total drop =

Notes:
- Order #5 & #5(E) bars full length.
- Cut to fit skew and use remainder of bars in opposite end.
- Order a(E) & a1(E) bars full length.
- Lap with #5(E) bars.

See sheet of for superstructure details.
Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.

MINIMUM BAR LAP
#5 bar = 3'-6"
-#5 a(E) bars at cts. top
-#5 a1(E) bars at cts. bottom
3-#5 a1(E) bars at 6" cts. top, each end
3-#5 a(E) bars at 6" cts. bottom, each end
-#5 d1(E) bars at 12" cts.
-#5 d(E) bars at 12" cts.
-#5 b1(E) bars at 12" cts.
-#5 b(E) bars at 12" cts.
1-#5 a(E) bar along skew, typ.
-#5 a1(E) bars at 12" cts. top
-#5 a1(E) bars at 12" cts. bottom
-#5 a(E) bars at 12" cts. bottom
-#5 b(E) bars at 12" cts. bottom, each end
-#5 b1(E) bars at 12" cts. top, each end
3-#5 b(E) bars spaced as shown in plan
-#5 a1(E) bars at 12" cts. top, each end
3-#5 a(E) bars at 12" cts. top, each end
-#6 a2(E) bars at 6" cts. top, each end
1-#5 d(E) bars at 12" cts.
1-#5 a4(E) bar, bottom each end
1-#5 b(E) bars bottom, all spaced as shown in plan
-#5 x(E) bars equally spaced at ±12" cts.
-#5 b(E) bars bottom, equally spaced at ±12" cts.
-#5 a(E) bar bottom, each end
-#5 a(E) bars bottom, spaced as shown in plan
-#5 b(E) bars bottom, spaced as shown in plan

Notes:
See sheet of for superstructure details and Bill of Material.
Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.
Order #5(E) & #5(E) bars full length.
Cut to fit skew and use remainder of bars in opposite end.

MINIMUM BAR LAP
#5 bar = 3'-6"
MINIMUM BAR LAP

#5 bar = 3'-6".

PLAN

out to out deck

Face to face parapets

CROSS SECTION

Looking

Notes:

See sheet 6 for superstructure details and Bill of Material.

Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.
PARTIAL PLAN

MINIMUM BAR LAP
#5 bar = 3'-6"
MINIMUM BAR LAP
\#5 bar = 3'-6"
3 x -#5 b(E) bars equally spaced at ±12" cts.

-#5 a1(E) bars at 1'-7" cts. bottom
-#5 a(E) bars at 1'-7" cts. top

-#5 b1(E) bars at 1'-7" cts. top of slab over pier

-#5 d1(E) bars at 1'-7" cts. top, each end
-#5 a5(E) bars at 6" cts. top, each end
-#5 b(E) bars at 1'-7" cts. top, each end

1'-7" out to out deck
1'-2" out to out deck

PARTIAL PLAN

MINIMUM BAR LAP
#5 bar = 3'-6"

Notes:
See sheet ... superstructure details
Bars indicated thus 20 x 3-#5 etc. indicates 20 lines of bars with 3 lengths per line.
MINIMUM BAR LAP
#5 bar = 3'-6"

#6 a(E) bars at cts. top
(60 with #5 bars)

3 # a(E) headed bars at 8" cts.
bottom between beams, each end

#6 b(E) bars at 8" cts. top, each end

3 # a(E) bars at cts. top
detail between beams

1-5 a(E) headed bars
rolled on each end

#6 d(E) bars at 11" cts.

5 # b(E) bars

PARTIAL PLAN

PARTIAL PLAN

end to end deck

CROSS SECTION

NEAR PIER

NEAR MIDSPAN

Total drop =

Face to face parapets

Notes:
See sheet of for superstructure details and Bill of Material.
Bars indicated thus 20 x 3-#5 etc. indicates
20 lines of bars with 3 lengths per line.

Order #E1 & #E5 bars full length.
Cut to fit skew and use remainder
of bars in opposite end.

Aluminum sheet
8
1

...
MINIMUM BAR LAP

#5 bar = 3'-6"