<table>
<thead>
<tr>
<th>CELL / MODEL NAME</th>
<th>DESCRIPTION</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSC-A-1</td>
<td>General plan and elevation</td>
<td>08/21/2013</td>
</tr>
<tr>
<td>OSC-A-2</td>
<td>Truss details</td>
<td>06/01/2012</td>
</tr>
<tr>
<td>OSC-A-3</td>
<td>Juncture details</td>
<td>06/01/2012</td>
</tr>
<tr>
<td>OSC-A-4</td>
<td>Type I-C-A truss support post</td>
<td>06/01/2012</td>
</tr>
<tr>
<td>OSC-A-5</td>
<td>Type II-C-A & III-C-A truss support post</td>
<td>06/01/2012</td>
</tr>
<tr>
<td>OSC-A-6</td>
<td>Aluminum walkway details</td>
<td>06/01/2012</td>
</tr>
<tr>
<td>OSC-A-6S</td>
<td>Alternate steel walkway details</td>
<td>06/01/2012</td>
</tr>
<tr>
<td>OSC-A-7</td>
<td>Walkway details</td>
<td>06/01/2012</td>
</tr>
<tr>
<td>OSC-A-7S</td>
<td>Alternate walkway details</td>
<td>06/01/2012</td>
</tr>
<tr>
<td>OSC-A-8</td>
<td>Handrail details</td>
<td>06/01/2012</td>
</tr>
<tr>
<td>OSC-A-9</td>
<td>Drilled shaft foundations details</td>
<td>08/21/2013</td>
</tr>
<tr>
<td>OSC-A-D</td>
<td>Damping Device</td>
<td>06/01/2012</td>
</tr>
</tbody>
</table>
Contoured Washers

<table>
<thead>
<tr>
<th>Size</th>
<th>Contoured Washers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1"</td>
<td></td>
</tr>
<tr>
<td>1 1/2"</td>
<td></td>
</tr>
<tr>
<td>2"</td>
<td></td>
</tr>
<tr>
<td>2 1/2"</td>
<td></td>
</tr>
<tr>
<td>3"</td>
<td></td>
</tr>
</tbody>
</table>

Detail of Stainless Steel Sleeve

- Minimum gap between post and collar at any location equals 1" before tightening bolts.
- O.D. of 16 gage stainless steel sleeve 3" thick.
- O.D. of collar 4" thick.
- Cap plate and stainless steel sleeve to be O.D. post + 10".
- Grill top if required to fully seal aluminum plate and stainless steel sheet.
- After tightening lower connection bolts, fill gap with non-hardening, silicone caulk suitable for exterior exposure and acceptable to the Engineer. Cost is included in Overhead Sign Structure Cantilever.
- Upper and lower connection bolts in color and bolts of lower chord connection shall be high strength with matching locknuts. Connection bolts shall have 2 stainless steel flat washers each.

TO BE O.D. POST + 10"

Orient pipe toward walkway side.

8° - 10° CANTILEVER SIGN STRUCTURES - JUNCTURE DETAILS

ALUMINUM TRUSS & STEEL POST

PLOT DATE

PLOT SCALE

DETAIL A

Two locations (For details not shown, see Detail C)

DETAIL B

DETAIL C

DETAIL D

DETAIL A

DETAIL B

DETAIL C

DETAIL D
SUGGESTED POSITIONING PLATE

Anchor rod detail: Anchor rod shall conform to ASTM F1554 Grade 105, using the upper 18'' (minimum*** and associated AASHTO M291, Grade A, C or DH heavy hex nuts and hardened washers per AASHTO M232. No welding shall be permitted on rods. Provide a nut at bottom, a hexagon locknut and washer above base plate. Utilize positioning plate and temporary nuts to maintain anchor bolts' alignment with leveling nuts or other Engineer approved methods to maintain anchor bolts' alignment during concrete placement. Plate, extra nuts and other positioning aids become Contractor's property. Cast included in Drilled Shaft Concrete Foundations.

Drill & tap 3" holes in cover for 4" - 20 round head hot dip galvanized or stainless steel machine screws. (See cover details.)

Provide 1 nut per rod. Carefully thread bolt or wash chemical thread lock to secure.

Note; "H" based on 15'-0'' or actual sign height, whichever is greater.
Top of WF(A-N)4x3.06 walkway support and sign brackets for clarity.

TYPICAL FRONT ELEVATION

- **Sign panel**
- **Top of WF(A-N)4x3.06** (Sign Support Only)
- **Top of WF(A-N)4x1.79** (Walkway Support Only)
- **WF(A-N)4x3.06** (if required)
- **WF(A-N)4x1.79**
- **OSC-A-6S**

Metal materials
- **Galvanized Steel Walkway**
- **Aluminum Plank**
- **Lighting fixtures** (as required)
- **Truss Grating Splice**

TIE-DOWNS

- **Hangers**
- **Handrail Joint**
- **Truss Grating Length (TGL)**
- **Walkway Grating Splice**
- **Design Length (L)**
- **Truss Grating**

Numbers to be used
- **WGL = TGL - (+ 6'')**
- **ED**
- **TGL = L - (+ 6'')**
- **h = 6'-0'' maximum (~ to ~ sign and/or walkway support brackets, WF(A-N)4x1.79 or WF(A-N)4x3.06)**
- **g = 12'' maximum, 4'' minimum (End of walkway to ~ of nearest bracket)**
- **f = 12'' maximum, 4'' minimum (End of sign to ~ of nearest bracket)**

Notes
- Space walkway brackets WF(A-N)4x3.06 and sign brackets WF(A-N)4x1.79 for efficiency and within limits shown.
- Use and location of handrail joints or grating splices are optional, based on lengths needed and material availability.
- Grating shall span a minimum of three brackets between splices.
- Handrail and walkway gratings shall span at least one end between splices.
- Truss grating to facilitate inspection shall run full length of cantilever. Cost of truss grating is included in Overview/Sign Structure Cantilever.

BRACKET TABLE

- **WF(A-N)4x3.06** or **WF(A-N)4x1.79**
- **ASTM B308, Alloy 6061-T6**

SECTION A-A

- **用途**: 用于指示牌或走道支撑的固定结构。
- **材料**: 铝制格栅, 钢制走道。
- **设计**: 用于跨越多于三个支撑点之间的结构。
- **使用**: 用于指示牌和走道格栅之间的连接。

备注
- 使用手扶栏杆或格栅连接的使用和位置是可选的, 基于所需的长度和材料可用性。
- 格栅应至少跨越三个支撑点之间的长度。
- 使用和固定结构的支撑点应在基板OSC-A-6S中查看。

文件说明
- **设计**: 签发日期: 6-1-12
- **检查**: 签发日期: 6-1-12
- **绘制**: 签发日期: 6-1-12
GALVANIZED STEEL WALKWAY GRATING

Walkway Grating:
- Steel walkway planks 1'-2'' wide
- Aluminum angles 1'-4''
- Stainless steel u-bolts 2'' long
- Stainless steel flat washers between bolt head and angle

Sign Panel:
- Bolted symmetrically about & Truss
- Sign shall be even with the top of the bracket, but it may extend no more than 5'' above the top of the bracket for field adjustments.

ALUMINUM TRUSS GRATING

Signage:
- WF(A-N)4x3.06 for walkway only
- Minimum elevation for top of WF(A-N)4x1.79 sign support

Truss Grating:
- WF(A-N)4x3.06 sign support at WF(A-N)4x3.06 sign and walkway support
- WF(A-N)4x3.06 sign
- WF(A-N)4x3.06 sign support

Aluminum plank, 1'-2'' wide

Alternate details and Locations may be used subject to shims performing properly.

Drilling holes in grating may be done in shop or field, based on Contractor's preference and subject to accurate alignment.

Stainless steel shims shall be placed under angles at horizontals and horizontal diagonals if needed to accommodate for alignment variations and differences in horizontal diagonal pipe sizes beyond adjustment provided by angles. Secure with one stainless steel shim per location, see "Shim Detail". Thicker shim plates may be used when needed subject to shims performing properly.

Alternate splice details and Locations may be used when needed subject to shims performing properly.

Drill holes in grating may be done in shop or field, based on Contractor's preference and subject to accurate alignment.

Stainless steel shims shall be placed under angles at horizontals and horizontal diagonals if needed to accommodate for alignment variations and differences in horizontal diagonal pipe sizes beyond adjustment provided by angles. Secure with one stainless steel shim per location, see "Shim Detail". Thicker shim plates may be used when needed subject to shims performing properly.

Drilling holes in grating may be done in shop or field, based on Contractor's preference and subject to accurate alignment.

Stainless steel shims shall be placed under angles at horizontals and horizontal diagonals if needed to accommodate for alignment variations and differences in horizontal diagonal pipe sizes beyond adjustment provided by angles. Secure with one stainless steel shim per location, see "Shim Detail". Thicker shim plates may be used when needed subject to shims performing properly.

Perforated or expanded metal grating providing a skid resistant non-serrated surface and capable of supporting a 500 pound concentrated load with a 6'-0'' clear span. Walkway and truss grating dimensions are nominal and may vary (width ±1'', depth ±2'') based on available standard sizes. Cut ends of grating shall be prepared to standard. Aluminum angles subjected to the Engineer's review and approval.

Stainless steel shims shall be placed under angles at horizontals and horizontal diagonals if needed to accommodate for alignment variations and differences in horizontal diagonal pipe sizes beyond adjustment provided by angles. Secure with one stainless steel shim per location, see "Shim Detail". Thicker shim plates may be used when needed subject to shims performing properly.

Drilling holes in grating may be done in shop or field, based on Contractor's preference and subject to accurate alignment.

Stainless steel shims shall be placed under angles at horizontals and horizontal diagonals if needed to accommodate for alignment variations and differences in horizontal diagonal pipe sizes beyond adjustment provided by angles. Secure with one stainless steel shim per location, see "Shim Detail". Thicker shim plates may be used when needed subject to shims performing properly.

Perforated or expanded metal grating providing a skid resistant non-serrated surface and capable of supporting a 500 pound concentrated load with a 6'-0'' clear span. Walkway and truss grating dimensions are nominal and may vary (width ±1'', depth ±2'') based on available standard sizes. Cut ends of grating shall be prepared to standard. Aluminum angles subjected to the Engineer's review and approval.

Stainless steel shims shall be placed under angles at horizontals and horizontal diagonals if needed to accommodate for alignment variations and differences in horizontal diagonal pipe sizes beyond adjustment provided by angles. Secure with one stainless steel shim per location, see "Shim Detail". Thicker shim plates may be used when needed subject to shims performing properly.

Perforated or expanded metal grating providing a skid resistant non-serrated surface and capable of supporting a 500 pound concentrated load with a 6'-0'' clear span. Walkway and truss grating dimensions are nominal and may vary (width ±1'', depth ±2'') based on available standard sizes. Cut ends of grating shall be prepared to standard. Aluminum angles subjected to the Engineer's review and approval.

Stainless steel shims shall be placed under angles at horizontals and horizontal diagonals if needed to accommodate for alignment variations and differences in horizontal diagonal pipe sizes beyond adjustment provided by angles. Secure with one stainless steel shim per location, see "Shim Detail". Thicker shim plates may be used when needed subject to shims performing properly.

Perforated or expanded metal grating providing a skid resistant non-serrated surface and capable of supporting a 500 pound concentrated load with a 6'-0'' clear span. Walkway and truss grating dimensions are nominal and may vary (width ±1'', depth ±2'') based on available standard sizes. Cut ends of grating shall be prepared to standard. Aluminum angles subjected to the Engineer's review and approval.

Stainless steel shims shall be placed under angles at horizontals and horizontal diagonals if needed to accommodate for alignment variations and differences in horizontal diagonal pipe sizes beyond adjustment provided by angles. Secure with one stainless steel shim per location, see "Shim Detail". Thicker shim plates may be used when needed subject to shims performing properly.

Perforated or expanded metal grating providing a skid resistant non-serrated surface and capable of supporting a 500 pound concentrated load with a 6'-0'' clear span. Walkway and truss grating dimensions are nominal and may vary (width ±1'', depth ±2'') based on available standard sizes. Cut ends of grating shall be prepared to standard. Aluminum angles subjected to the Engineer's review and approval.

Stainless steel shims shall be placed under angles at horizontals and horizontal diagonals if needed to accommodate for alignment variations and differences in horizontal diagonal pipe sizes beyond adjustment provided by angles. Secure with one stainless steel shim per location, see "Shim Detail". Thicker shim plates may be used when needed subject to shims performing properly.

Perforated or expanded metal grating providing a skid resistant non-serrated surface and capable of supporting a 500 pound concentrated load with a 6'-0'' clear span. Walkway and truss grating dimensions are nominal and may vary (width ±1'', depth ±2'') based on available standard sizes. Cut ends of grating shall be prepared to standard. Aluminum angles subjected to the Engineer's review and approval.

Stainless steel shims shall be placed under angles at horizontals and horizontal diagonals if needed to accommodate for alignment variations and differences in horizontal diagonal pipe sizes beyond adjustment provided by angles. Secure with one stainless steel shim per location, see "Shim Detail". Thicker shim plates may be used when needed subject to shims performing properly.

Perforated or expanded metal grating providing a skid resistant non-serrated surface and capable of supporting a 500 pound concentrated load with a 6'-0'' clear span. Walkway and truss grating dimensions are nominal and may vary (width ±1'', depth ±2'') based on available standard sizes. Cut ends of grating shall be prepared to standard. Aluminum angles subjected to the Engineer's review and approval.

Stainless steel shims shall be placed under angles at horizontals and horizontal diagonals if needed to accommodate for alignment variations and differences in horizontal diagonal pipe sizes beyond adjustment provided by angles. Secure with one stainless steel shim per location, see "Shim Detail". Thicker shim plates may be used when needed subject to shims performing properly.

Perforated or expanded metal grating providing a skid resistant non-serrated surface and capable of supporting a 500 pound concentrated load with a 6'-0'' clear span. Walkway and truss grating dimensions are nominal and may vary (width ±1'', depth ±2'') based on available standard sizes. Cut ends of grating shall be prepared to standard. Aluminum angles subjected to the Engineer's review and approval.

Stainless steel shims shall be placed under angles at horizontals and horizontal diagonals if needed to accommodate for alignment variations and differences in horizontal diagonal pipe sizes beyond adjustment provided by angles. Secure with one stainless steel shim per location, see "Shim Detail". Thicker shim plates may be used when needed subject to shims performing properly.

Perforated or expanded metal grating providing a skid resistant non-serrated surface and capable of supporting a 500 pound concentrated load with a 6'-0'' clear span. Walkway and truss grating dimensions are nominal and may vary (width ±1'', depth ±2'') based on available standard sizes. Cut ends of grating shall be prepared to standard. Aluminum angles subjected to the Engineer's review and approval.

Stainless steel shims shall be placed under angles at horizontals and horizontal diagonals if needed to accommodate for alignment variations and differences in horizontal diagonal pipe sizes beyond adjustment provided by angles. Secure with one stainless steel shim per location, see "Shim Detail". Thicker shim plates may be used when needed subject to shims performing properly.

Perforated or expanded metal grating providing a skid resistant non-serrated surface and capable of supporting a 500 pound concentrated load with a 6'-0'' clear span. Walkway and truss grating dimensions are nominal and may vary (width ±1'', depth ±2'') based on available standard sizes. Cut ends of grating shall be prepared to standard. Aluminum angles subjected to the Engineer's review and approval.

Stainless steel shims shall be placed under angles at horizontals and horizontal diagonals if needed to accommodate for alignment variations and differences in horizontal diagonal pipe sizes beyond adjustment provided by angles. Secure with one stainless steel shim per location, see "Shim Detail". Thicker shim plates may be used when needed subject to shims performing properly.

Perforated or expanded metal grating providing a skid resistant non-serrated surface and capable of supporting a 500 pound concentrated load with a 6'-0'' clear span. Walkway and truss grating dimensions are nominal and may vary (width ±1'', depth ±2'') based on available standard sizes. Cut ends of grating shall be prepared to standard. Aluminum angles subjected to the Engineer's review and approval.
The foundation dimensions shown in the Foundation Design Table are based on the presence of mostly cohesive soils with an average Undrained Compressive Strength (Su) of at least 1.5 tpsf, which must be determined by previous soil investigations at the jobsite. When other conditions are indicated, the boring data will be included in the plans and the foundation dimensions shown in the Foundation Data Table will be the result of site-specific designs.

If the conditions encountered are different than those indicated, the Contractor shall notify the Engineer to determine if the foundation dimensions need to be modified. If dimensions "B" or "F" are revised by more than 10% by the Contractor, "as-built" plans shall be submitted to the District Bureau of Operations for future reference.

No sonotubes or decomposable forms shall be used below the lower conduit entrance.

Temporary metal forms or other shielding may not be left in place below that elevation without the Engineer's written permission.

Distance to edge of pavement shall be included in cost of Drilled Shaft Concrete Foundations.

Grind anchor rod to bright finish at ground clamp location before installing clamp.

Approved compaction for grounding to Anchor Rod*.

For details of anchor rods and positioning templates see Foundation Design Table Sheets OSC-A-4 and OSC-A-5.

Distance to edge of pavement shall be included in cost of rod, cable and clamps driven into natural ground. Cost of rod, cable and clamps shall be included in cost of Drilled Shaft Concrete Foundations.

Drilled Shaft Concrete Foundations.