<table>
<thead>
<tr>
<th>CELL / MODEL NAME</th>
<th>DESCRIPTION</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA-P-39CS-0 (1 of 3)</td>
<td>Bridge Approach; Precast; 39 in. Constant Slope; No skew</td>
<td>6/15/2019</td>
</tr>
<tr>
<td>BA-P-39CS-0 (2 of 3)</td>
<td>Bridge Approach; Precast; 39 in. Constant Slope; No skew</td>
<td>6/15/2019</td>
</tr>
<tr>
<td>BA-P-39CS-0 (3 of 3)</td>
<td>Bridge Approach; Precast; 39 in. Constant Slope; No skew</td>
<td>6/15/2019</td>
</tr>
<tr>
<td>BA-P-39CS-L-Greater than 30 degrees (1 of 3)</td>
<td>Bridge Approach; Precast; 39 in. Constant Slope; Left skew; Greater than 30 degrees</td>
<td>6/15/2019</td>
</tr>
<tr>
<td>BA-P-39CS-L-Greater than 30 degrees (2 of 3)</td>
<td>Bridge Approach; Precast; 39 in. Constant Slope; Left skew; Greater than 30 degrees</td>
<td>6/15/2019</td>
</tr>
<tr>
<td>BA-P-39CS-L-Greater than 30 degrees (3 of 3)</td>
<td>Bridge Approach; Precast; 39 in. Constant Slope; Left skew; Greater than 30 degrees</td>
<td>6/15/2019</td>
</tr>
<tr>
<td>BA-P-39CS-L-Less than or equal to 30 degrees (1 of 3)</td>
<td>Bridge Approach; Precast; 39 in. Constant Slope; Left skew; Less than or equal to 30 degrees</td>
<td>6/15/2019</td>
</tr>
<tr>
<td>BA-P-39CS-L-Less than or equal to 30 degrees (2 of 3)</td>
<td>Bridge Approach; Precast; 39 in. Constant Slope; Left skew; Less than or equal to 30 degrees</td>
<td>6/15/2019</td>
</tr>
<tr>
<td>BA-P-39CS-L-Less than or equal to 30 degrees (3 of 3)</td>
<td>Bridge Approach; Precast; 39 in. Constant Slope; Left skew; Less than or equal to 30 degrees</td>
<td>6/15/2019</td>
</tr>
<tr>
<td>BA-P-39CS-R-Greater than 30 degrees (1 of 3)</td>
<td>Bridge Approach; Precast; 39 in. Constant Slope; Right skew; Greater than 30 degrees</td>
<td>6/15/2019</td>
</tr>
<tr>
<td>BA-P-39CS-R-Greater than 30 degrees (2 of 3)</td>
<td>Bridge Approach; Precast; 39 in. Constant Slope; Right skew; Greater than 30 degrees</td>
<td>6/15/2019</td>
</tr>
<tr>
<td>BA-P-39CS-R-Greater than 30 degrees (3 of 3)</td>
<td>Bridge Approach; Precast; 39 in. Constant Slope; Right skew; Greater than 30 degrees</td>
<td>6/15/2019</td>
</tr>
<tr>
<td>BA-P-39CS-R-Less than or equal to 30 degrees (1 of 3)</td>
<td>Bridge Approach; Precast; 39 in. Constant Slope; Right skew; Less than or equal to 30 degrees</td>
<td>6/15/2019</td>
</tr>
<tr>
<td>BA-P-39CS-R-Less than or equal to 30 degrees (2 of 3)</td>
<td>Bridge Approach; Precast; 39 in. Constant Slope; Right skew; Less than or equal to 30 degrees</td>
<td>6/15/2019</td>
</tr>
<tr>
<td>BA-P-39CS-R-Less than or equal to 30 degrees (3 of 3)</td>
<td>Bridge Approach; Precast; 39 in. Constant Slope; Right skew; Less than or equal to 30 degrees</td>
<td>6/15/2019</td>
</tr>
<tr>
<td>BA-P-44CS-0 (1 of 3)</td>
<td>Bridge Approach; Precast; 44 in. Constant Slope; No skew</td>
<td>6/15/2019</td>
</tr>
<tr>
<td>BA-P-44CS-0 (2 of 3)</td>
<td>Bridge Approach; Precast; 44 in. Constant Slope; No skew</td>
<td>6/15/2019</td>
</tr>
<tr>
<td>CELL / MODEL NAME</td>
<td>DESCRIPTION</td>
<td>DATE</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>BA-P-44CS-0 (3 of 3)</td>
<td>Bridge Approach; Precast; 44 in. Constant Slope; No skew</td>
<td>6/15/2019</td>
</tr>
<tr>
<td>DATE</td>
<td>REVISION HISTORY</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>8/11/2017</td>
<td>- Added top and bottom footing elevations.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Changed footing thickness to constant 10 inches such that the bottom of footing follows the grade.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Corrected parapet reinforcement on base sheet BA-P-42FS-0.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Called out formed joint at beginning of approach slabs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Removed strip seal details with the intent that the strip seal base sheets will cover these.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Recessed fabric bearing pads into the footing and increased their thickness to 3/4 inch.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Corrected miscellaneous editorial and drafting errors.</td>
<td></td>
</tr>
<tr>
<td>6/15/2019</td>
<td>- Replaced F-shaped parapets with new constant slope parapets and revised all reinforcement accordingly.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Called out wingwall joint material on cross section.</td>
<td></td>
</tr>
</tbody>
</table>
DETAIL A

TOP AND BOTTOM ELEVATIONS

FOR APPROACH FOOTING

* Fabric bearing pads at the expansion end shall be recessed 1/4" into the approach footing and bonded. Adjusting shims, when required, shall be bonded to the top of the fabric bearing pads.

Bridge Approach Slab

1-11" x - Precast

At Approach Footing

1-11" x - Precast

PLAN

CROSS SECTION

STATE OF ILLINOIS

DEPARTMENT OF TRANSPORTATION

PRECAST BRIDGE APPROACH SLAB

STRUCTURE NO.

Sheet 1 of 3

RAW TEXT

1. Fabric bearing pads at the expansion end shall be recessed 1/4" into the approach footing and bonded. Adjusting shims, when required, shall be bonded to the top of the fabric bearing pads.

2. **Shear key cast with concrete wrapping surface, typ.**

3. **Interior fabric bonding surface, typ.**

4. **Styrofoam back full length of beam.**

5. **See Hwy. Std. 420401.**

6. **Placed under cast in place portion of approach slab full length.**

7. **Bonded to wingwall with suitable adhesive as recommended by supplier.**

8. **Placed in place portion of approach slab full length.**

9. **Cellular polystyrene according to ASTM C 578 (Types V, VII or XV).**

PREPARED BY: USER NAME

PLOT DATE:

DESIGNED:

REvised:

CHECKED:

DRAWN:

DATE:

TIME:

MODEL:

FILE NAME:

F A. SHEET OF SHEETS

Notes:
The joint opening shall be adjusted for temperature per Article 520.04 of the Standard Specifications. However, since this detail is for jointless structures, the length of bridge used to calculate the adjustment shall be equal to half the total bridge length plus the length of the bridge approach slab.

After precast bridge approach slabs have been erected, holes shall be drilled into the approach end anchor beams placed. Dowel holes shall be filled with non-shrink grout to top of precast slab and cured according to Article 1020.13(B) or 1020.13(A)(3) of the Standard Specifications for a minimum of 24 hours before casting the shear keys and wearing surface.

Any concrete poured monolithically with the wearing surface, such as curbs, shall not be paid for separately, but will be included in the cost of Concrete Wearing Surface, 5t.

The strip seal shall extend 6" beyond the edge of the approach slab on each end. Parapet concrete shall be paid for as Concrete Superstructure.

Approach footing concrete shall be paid for as Concrete Structures.

The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Cost of excavation for approach footing included with Concrete Structures.

Parapet for Granular Backfill for Structures and drainage treatment details, see sheet of .

Cost of cellular polystyrene is included with Concrete Superstructure.
Notes:
The precast bridge approach slab shall be according to Section 504 of the Standard Specifications and shall be paid for at the contract unit price per square foot for Precast Bridge Approach Slab.

Cast-in-place substitution of Precast Bridge Approach Slab is not allowed.

The top surface of precast approach slabs shall be finished similar to precast prestressed deck beams with concrete wearing surface as specified in the IDOT "Manual for Fabrication of Precast Prestressed Concrete Products."

Two 1/2" fabric adjusting shims of the dimensions of the exterior bearing pad shall be provided for each bearing pad location. Cost included with Precast Bridge Approach Slab.

A minimum 2 1/2" lifting pins shall be used to engage the lifting loops during handling.

Compressive strength of precast concrete, f'c, shall be 6,000 psi.

Tensile strength of precast concrete, f'cd shall be 1,200 psi.

Concrete compressive strength, f'c, shall be 5,000 psi.

Notes:
Bearing pads at fixed end shall be ¾" thick and bearing pads at expansion end shall be ½" thick.

Cost holes for fabric bearing pads at approach slab footing end of beams.

Cast-in-place substitution of Precast Bridge Approach Slab is not allowed.

The precast bridge approach slab shall be according to Section 504 of the Standard Specifications and shall be paid for at the contract unit price per square foot for Precast Bridge Approach Slab.

The top surface of precast approach slabs shall be finished similar to precast prestressed deck beams with concrete wearing surface as specified in the IDOT "Manual for Fabrication of Precast Prestressed Concrete Products."

Two 1/2" fabric adjusting shims of the dimensions of the exterior bearing pad shall be provided for each bearing pad location. Cost included with Precast Bridge Approach Slab.

A minimum 2 1/2" lifting pins shall be used to engage the lifting loops during handling.

Compressive strength of precast concrete, f'c, shall be 6,000 psi.

Tensile strength of precast concrete, f'cd shall be 1,200 psi.

Concrete compressive strength, f'c, shall be 5,000 psi.

Notes:
Bearing pads at fixed end shall be ¾" thick and bearing pads at expansion end shall be ½" thick.

Cost holes for fabric bearing pads at approach slab footing end of beams.

Cast-in-place substitution of Precast Bridge Approach Slab is not allowed.

The precast bridge approach slab shall be according to Section 504 of the Standard Specifications and shall be paid for at the contract unit price per square foot for Precast Bridge Approach Slab.

The top surface of precast approach slabs shall be finished similar to precast prestressed deck beams with concrete wearing surface as specified in the IDOT "Manual for Fabrication of Precast Prestressed Concrete Products."

Two 1/2" fabric adjusting shims of the dimensions of the exterior bearing pad shall be provided for each bearing pad location. Cost included with Precast Bridge Approach Slab.

A minimum 2 1/2" lifting pins shall be used to engage the lifting loops during handling.

Compressive strength of precast concrete, f'c, shall be 6,000 psi.

Tensile strength of precast concrete, f'cd shall be 1,200 psi.

Concrete compressive strength, f'c, shall be 5,000 psi.

Notes:
Bearing pads at fixed end shall be ¾" thick and bearing pads at expansion end shall be ½" thick.

Cost holes for fabric bearing pads at approach slab footing end of beams.

Cast-in-place substitution of Precast Bridge Approach Slab is not allowed.

The precast bridge approach slab shall be according to Section 504 of the Standard Specifications and shall be paid for at the contract unit price per square foot for Precast Bridge Approach Slab.

The top surface of precast approach slabs shall be finished similar to precast prestressed deck beams with concrete wearing surface as specified in the IDOT "Manual for Fabrication of Precast Prestressed Concrete Products."

Two 1/2" fabric adjusting shims of the dimensions of the exterior bearing pad shall be provided for each bearing pad location. Cost included with Precast Bridge Approach Slab.

A minimum 2 1/2" lifting pins shall be used to engage the lifting loops during handling.

Compressive strength of precast concrete, f'c, shall be 6,000 psi.

Tensile strength of precast concrete, f'cd shall be 1,200 psi.

Concrete compressive strength, f'c, shall be 5,000 psi.

Notes:
Bearing pads at fixed end shall be ¾" thick and bearing pads at expansion end shall be ½" thick.

Cost holes for fabric bearing pads at approach slab footing end of beams.

Cast-in-place substitution of Precast Bridge Approach Slab is not allowed.

The precast bridge approach slab shall be according to Section 504 of the Standard Specifications and shall be paid for at the contract unit price per square foot for Precast Bridge Approach Slab.

The top surface of precast approach slabs shall be finished similar to precast prestressed deck beams with concrete wearing surface as specified in the IDOT "Manual for Fabrication of Precast Prestressed Concrete Products."

Two 1/2" fabric adjusting shims of the dimensions of the exterior bearing pad shall be provided for each bearing pad location. Cost included with Precast Bridge Approach Slab.
Notes:
The joint opening shall be adjusted for temperature per Article 520.04 of the Standard Specifications. However, since this detail is for jointless structures, the length of bridge used to calculate the adjustment shall be equal to half the total bridge length plus the length of the bridge approach slab.

After precast bridge approach slabs have been erected, holes shall be drilled into equipment and anchor dowels placed. Dowel holes shall be filled with non-shrink grout to top of precast slab and cured according to Article 1005.13(c)(3) or 1005.13(b)(3) of the Standard Specifications for a minimum of 24 hours before casting the shear keys and wearing surface.

Any concrete poured monolithically with the wearing surface, such as curbs, shall not be paid for separately, but will be included in the cost of Concrete Wearing Surface. The strip seal shall extend 6" beyond the edge of the approach slab on each end. Parapet concrete shall be paid for as Concrete Superstructure.

Approach footing concrete shall be paid for as Concrete Structures. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Cost of excavation for approach footing included with Concrete Structures.

Concrete Wearing Surface, 5"

For Granular Backfill for Structures and drainage treatment details, see sheet __ of __ for details.

Cost of excavation for approach footing included with Concrete Structures.

For Granular Backfill for Structures and drainage treatment details, see sheet of __ for details.

Cost of cellular polystyrene is included with Concrete Superstructure.

Notes:

Cost of anchor bolt assemblies included with Concrete Superstructure.

BA-P-39CS-L(>30°) 6-15-2019

(State of Illinois)

CONTRACT NO.

DEPARTMENT OF TRANSPORTATION

PLOT DATE

PLOT SCALE

USER NAME

UTILITY

DESIGNER

HISTORY

BILL OF MATERIAL

PRECAST BRIDGE APPROACH SLAB

STRUCTURE NO.

STATE OF ILLINOIS

CONTRACT NO.

DEPARTMENT OF TRANSPORTATION

PLOT DATE

PLOT SCALE

USER NAME

UTILITY

BILL OF MATERIAL

PRECAST BRIDGE APPROACH SLAB

STRUCTURE NO.
PLAN

TOP AND BOTTOM ELEVATIONS FOR APPROACH FOOTING

DETAIL 'A'

FOR APPROACH FOOTING

* Fabric bearing pads at the expansion end shall be recessed ¼" into the approach footing and bonded. Adjusting shims, when required, shall be bonded to the top of the fabric bearing pads.

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

PRECAST BRIDGE APPROACH SLAB
STRUCTURE NO.

BEAMS: 36" min. width, 72" max. width

6-15-2019

BA-P-39CS-L(≤30°)

(860×56)(Sheet 1 of 3)
Notes:
1. The precast bridge approach slab shall be according to Section 504 of the Standard Specifications and shall be paid for at the contract unit price per square foot for Precast Bridge Approach Slab.
2. Cast-in-place substitution of Precast Bridge Approach Slab is not allowed.
3. The top surface of precast bridge approach slabs shall be finished similar to precast prestressed deck beams with concrete wearing surface as specified in the IDOT "Manual for Fabrication of Precast Prestressed Concrete Products."
4. Two #5 fabric adjusting shims of the dimensions of the exterior bearing pad shall be provided for each bearing pad location. Cost included with Precast Bridge Approach Slab.
5. A minimum 2 1/2" Ø lifting pins shall be used to engage the lifting loops during handling.
6. Compressive strength of precast concrete, f'c shall be 6,000 psi.
7. Compressive strength of precast concrete during initial lifting, f'ci shall be 5,000 psi.

Beam Approach Slab.
8. The precast bridge approach slab shall be according to Section 504 of the Standard Specifications and shall be paid for at the contract unit price per square foot for Precast Bridge Approach Slab.
9. Cast-in-place substitution of Precast Bridge Approach Slab is not allowed.
10. The top surface of precast bridge approach slabs shall be finished similar to precast prestressed deck beams with concrete wearing surface as specified in the IDOT "Manual for Fabrication of Precast Prestressed Concrete Products."
11. Two #5 fabric adjusting shims of the dimensions of the exterior bearing pad shall be provided for each bearing pad location. Cost included with Precast Bridge Approach Slab.
12. A minimum 2 1/2" Ø lifting pins shall be used to engage the lifting loops during handling.
13. Compressive strength of precast concrete, f'c shall be 6,000 psi.
14. Compressive strength of precast concrete during initial lifting, f'ci shall be 5,000 psi.

Notes:
1. Bearing pads at fixed end shall be ½" thick and bearing pads at expansion end shall be ¾" thick.
2. Omit holes for fabric bearing pads at approach slab footing end of beams.
3. Fabric adjusting shims of the dimensions of the exterior bearing pad shall be provided for each bearing pad location. Cost included with Precast Bridge Approach Slab.
4. A minimum 2 1/2" Ø lifting pins shall be used to engage the lifting loops during handling.
5. Compressive strength of precast concrete, f'c shall be 6,000 psi.
6. Compressive strength of precast concrete during initial lifting, f'ci shall be 5,000 psi.

Notes:
1. Bearing pads at fixed end shall be ½" thick and bearing pads at expansion end shall be ¾" thick.
2. Omit holes for fabric bearing pads at approach slab footing end of beams.
3. Fabric adjusting shims of the dimensions of the exterior bearing pad shall be provided for each bearing pad location. Cost included with Precast Bridge Approach Slab.
4. A minimum 2 1/2" Ø lifting pins shall be used to engage the lifting loops during handling.
5. Compressive strength of precast concrete, f'c shall be 6,000 psi.
6. Compressive strength of precast concrete during initial lifting, f'ci shall be 5,000 psi.

Notes:
1. Bearing pads at fixed end shall be ½" thick and bearing pads at expansion end shall be ¾" thick.
2. Omit holes for fabric bearing pads at approach slab footing end of beams.
3. Fabric adjusting shims of the dimensions of the exterior bearing pad shall be provided for each bearing pad location. Cost included with Precast Bridge Approach Slab.
4. A minimum 2 1/2" Ø lifting pins shall be used to engage the lifting loops during handling.
5. Compressive strength of precast concrete, f'c shall be 6,000 psi.
6. Compressive strength of precast concrete during initial lifting, f'ci shall be 5,000 psi.
Notes:

The joint opening shall be adjusted for temperature per Article 520.04 of the Standard Specifications. However, since this detail is for jointless structures, the length of bridge used to calculate the adjustment shall be equal to half the total bridge length plus the length of the bridge approach slab.

After precast bridge approach slabs have been erected, holes shall be drilled into abutment end and anchor beams placed. Dowel holes shall be filled with non-shrink grout to top of precast slab and cured according to Article 1005.13(a)(3) or 1005.13(a)(5) of the Standard Specifications for a minimum of 24 hours before casting the shear keys and wearing surface.

Any concrete poured monolithically with the wearing surface, such as curbs, shall not be paid for separately, but will be included in the cost of Concrete Wearing Surface, 5". The strip seal shall extend 6" beyond the edge of the approach slab on each end. Parapet concrete shall be paid for as Concrete Superstructure.

Approach footing concrete shall be paid for as Concrete Structures. The approach footing maximum applied service bearing pressure (pmax) = 2.0 ksf. Cost of excavation for approach included with Concrete Structures. For Granular BackFill for Structures and drainage treatment details, see sheet 2 of 5.

Cost of cellular polystyrene is included with Concrete Superstructure. For Structures and drainage treatment details, see sheet 2 of 5. Cost of excavation for approach included with Concrete Structures. For Granular BackFill for Structures and drainage treatment details, see sheet 2 of 5.

Cost of excavation for approach included with Concrete Structures. For Granular BackFill for Structures and drainage treatment details, see sheet 2 of 5. Cost of cellular polystyrene is included with Concrete Superstructure.

The joint opening shall be adjusted for temperature per Article 520.04 of the Standard Specifications. However, since this detail is for jointless structures, the length of bridge used to calculate the adjustment shall be equal to half the total bridge length plus the length of the bridge approach slab.

After precast bridge approach slabs have been erected, holes shall be drilled into abutment end and anchor beams placed. Dowel holes shall be filled with non-shrink grout to top of precast slab and cured according to Article 1005.13(a)(3) or 1005.13(a)(5) of the Standard Specifications for a minimum of 24 hours before casting the shear keys and wearing surface.

Any concrete poured monolithically with the wearing surface, such as curbs, shall not be paid for separately, but will be included in the cost of Concrete Wearing Surface, 5". The strip seal shall extend 6" beyond the edge of the approach slab on each end. Parapet concrete shall be paid for as Concrete Superstructure.

Approach footing concrete shall be paid for as Concrete Structures. The approach footing maximum applied service bearing pressure (pmax) = 2.0 ksf. Cost of excavation for approach included with Concrete Structures. For Granular BackFill for Structures and drainage treatment details, see sheet 2 of 5.

Cost of cellular polystyrene is included with Concrete Superstructure. For Structures and drainage treatment details, see sheet 2 of 5. Cost of excavation for approach included with Concrete Structures. For Granular BackFill for Structures and drainage treatment details, see sheet 2 of 5. Cost of cellular polystyrene is included with Concrete Superstructure.
INSIDE ELEVATION OF PARAPET AND CURB

VIEW D-D

SECTION A-A

Notes:
1. The joint opening shall be adjusted for temperature per Article 520.04 of the Standard Specifications. However, since this detail is for jointless structures, the length of bridge used to calculate the adjustment shall be equal to half the total bridge length plus the length of the bridge approach slab.
2. After precast bridge approach slabs have been erected, holes shall be drilled into pavement and parapet deck placed. Dowel holes shall be filled with non-shrink grout to top of precast slab and cured according to Article 1009.13(a)(3) or 1020.13(a)(3) of the Standard Specifications for a minimum of 24 hours before casting the shear keys and wearing surface.
3. Any concrete poured monolithically with the wearing surface, such as curbs, shall not be paid for separately, but will be included in the cost of Concrete Wearing Surface, 5'.
4. The strip seal shall extend 9" beyond the edge of the approach slab on each end.
5. Precast concrete shall be paid for as Concrete Superstructure. Approach footing concrete shall be paid for as Concrete Structures.
6. Precast bridge approach slabs have been erected, holes shall be drilled into pavement and parapet deck placed. Dowel holes shall be filled with non-shrink grout to top of precast slab and cured according to Article 1009.13(a)(3) or 1020.13(a)(3) of the Standard Specifications for a minimum of 24 hours before casting the shear keys and wearing surface.

The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf.

Cost of excavation for approach footing included with Concrete Structures.

Approach footing concrete shall be paid for as Concrete Superstructure.

The strip seal shall extend 9" beyond the edge of the approach slab on each end.

Parapet concrete shall be paid for as Concrete Superstructure.

Any concrete poured monolithically with the wearing surface, such as curbs, shall not be paid for separately, but will be included in the cost of Concrete Wearing Surface, 5'.

The strip seal shall extend 9" beyond the edge of the approach slab on each end.

Precast concrete shall be paid for as Concrete Superstructure. Approach footing concrete shall be paid for as Concrete Structures.

For Granular Backfill for Structures and drainage treatment details, see sheet of .

Cost of excavating for approach footing included with Concrete Structures.

For Granular Backfill for Structures and drainage treatment details, see sheet of .

Cost of cellular polystyrene is included with Concrete Superstructure.
Notes:
The precast bridge approach slab shall be according to Section 504 of the Standard Specifications and shall be paid for at the contract unit price per square foot for Precast Bridge Approach Slab.
Cast-in-place substitution of Precast Bridge Approach Slab is not allowed. The top surface of precast bridge approach slabs shall be finished similar to precast prestressed deck beams with concrete wearing surface as specified in the IDOT "Manual for Fabrication of Precast Prestressed Concrete Products."
Two ¾" fabric adjusting shims of the dimensions of the exterior bearing pad shall be provided for each bearing pad location. Cost included with Precast Bridge Approach Slab.
A minimum 2½" lifting pins shall be used to engage the lifting loops during handling.
Compressive strength of precast concrete during initial lifting, f'c shall be 6,000 psi.
Compressive strength of precast concrete during initial lifting, f'c shall be 5,000 psi.

The top surface of precast bridge approach slabs shall be finished similar to precast prestressed deck beams with concrete wearing surface as specified in the IDOT "Manual for Fabrication of Precast Prestressed Concrete Products."

(For information only)

Notes:
Predetermined bridge approach slabs shall be according to Section 504 of the Standard Specifications and shall be paid for at the contract unit price per square foot for Precast Bridge Approach Slab. Cast-in-place substitution of Precast Bridge Approach Slab is not allowed. The top surface of precast bridge approach slabs shall be finished similar to precast prestressed deck beams with concrete wearing surface as specified in the IDOT "Manual for Fabrication of Precast Prestressed Concrete Products." Two ¾" fabric adjusting shims of the dimensions of the exterior bearing pad shall be provided for each bearing pad location. Cost included with Precast Bridge Approach Slab.

A minimum 2½" lifting pins shall be used to engage the lifting loops during handling.
Compressive strength of precast concrete during initial lifting, f'c shall be 6,000 psi.
Compressive strength of precast concrete during initial lifting, f'c shall be 5,000 psi.

For information only.

Notes:

- Fabric bearing pads at fixed end shall be ½" thick and bearing pads at expansion end shall be ¾" thick.
- Cost holes for fabric bearing pads at approach slab footing end of beams.

Fabrication:

- Bears shall be 6½" wide and 72" max. width.
- Fabric bearing pads at fixed end shall be ½" thick and bearing pads at expansion end shall be ¾" thick.
- Cost holes for fabric bearing pads at approach slab footing end of beams.

Fabrication:

- Bears shall be 6½" wide and 72" max. width.
- Fabric bearing pads at fixed end shall be ½" thick and bearing pads at expansion end shall be ¾" thick.
- Cost holes for fabric bearing pads at approach slab footing end of beams.

Notes:

- Bears shall be 6½" wide and 72" max. width.
- Fabric bearing pads at fixed end shall be ½" thick and bearing pads at expansion end shall be ¾" thick.
- Cost holes for fabric bearing pads at approach slab footing end of beams.

Notes:

- Bears shall be 6½" wide and 72" max. width.
- Fabric bearing pads at fixed end shall be ½" thick and bearing pads at expansion end shall be ¾" thick.
- Cost holes for fabric bearing pads at approach slab footing end of beams.

Notes:

- Bears shall be 6½" wide and 72" max. width.
- Fabric bearing pads at fixed end shall be ½" thick and bearing pads at expansion end shall be ¾" thick.
- Cost holes for fabric bearing pads at approach slab footing end of beams.

Notes:

- Bears shall be 6½" wide and 72" max. width.
- Fabric bearing pads at fixed end shall be ½" thick and bearing pads at expansion end shall be ¾" thick.
- Cost holes for fabric bearing pads at approach slab footing end of beams.

Notes:

- Bears shall be 6½" wide and 72" max. width.
- Fabric bearing pads at fixed end shall be ½" thick and bearing pads at expansion end shall be ¾" thick.
- Cost holes for fabric bearing pads at approach slab footing end of beams.

Notes:

- Bears shall be 6½" wide and 72" max. width.
- Fabric bearing pads at fixed end shall be ½" thick and bearing pads at expansion end shall be ¾" thick.
- Cost holes for fabric bearing pads at approach slab footing end of beams.

Notes:

- Bears shall be 6½" wide and 72" max. width.
- Fabric bearing pads at fixed end shall be ½" thick and bearing pads at expansion end shall be ¾" thick.
- Cost holes for fabric bearing pads at approach slab footing end of beams.

Notes:

- Bears shall be 6½" wide and 72" max. width.
- Fabric bearing pads at fixed end shall be ½" thick and bearing pads at expansion end shall be ¾" thick.
- Cost holes for fabric bearing pads at approach slab footing end of beams.

Notes:

- Bears shall be 6½" wide and 72" max. width.
- Fabric bearing pads at fixed end shall be ½" thick and bearing pads at expansion end shall be ¾" thick.
- Cost holes for fabric bearing pads at approach slab footing end of beams.

Notes:

- Bears shall be 6½" wide and 72" max. width.
- Fabric bearing pads at fixed end shall be ½" thick and bearing pads at expansion end shall be ¾" thick.
- Cost holes for fabric bearing pads at approach slab footing end of beams.

Notes:

- Bears shall be 6½" wide and 72" max. width.
- Fabric bearing pads at fixed end shall be ½" thick and bearing pads at expansion end shall be ¾" thick.
- Cost holes for fabric bearing pads at approach slab footing end of beams.

Notes:

- Bears shall be 6½" wide and 72" max. width.
- Fabric bearing pads at fixed end shall be ½" thick and bearing pads at expansion end shall be ¾" thick.
- Cost holes for fabric bearing pads at approach slab footing end of beams.

Notes:

- Bears shall be 6½" wide and 72" max. width.
- Fabric bearing pads at fixed end shall be ½" thick and bearing pads at expansion end shall be ¾" thick.
- Cost holes for fabric bearing pads at approach slab footing end of beams.

Notes:

- Bears shall be 6½" wide and 72" max. width.
- Fabric bearing pads at fixed end shall be ½" thick and bearing pads at expansion end shall be ¾" thick.
- Cost holes for fabric bearing pads at approach slab footing end of beams.

Notes:

- Bears shall be 6½" wide and 72" max. width.
- Fabric bearing pads at fixed end shall be ½" thick and bearing pads at expansion end shall be ¾" thick.
- Cost holes for fabric bearing pads at approach slab footing end of beams.

Notes:

- Bears shall be 6½" wide and 72" max. width.
- Fabric bearing pads at fixed end shall be ½" thick and bearing pads at expansion end shall be ¾" thick.
- Cost holes for fabric bearing pads at approach slab footing end of beams.

Notes:

- Bears shall be 6½" wide and 72" max. width.
- Fabric bearing pads at fixed end shall be ½" thick and bearing pads at expansion end shall be ¾" thick.
- Cost holes for fabric bearing pads at approach slab footing end of beams.
INSIDE ELEVATION OF PARAPET AND CURB

3/4" x 3/4" Formed joint with bridge
Relief joint sealer, Full width.

36'-0" end to end approach

Concrete Wearing Surface, 5"
Strip Seal Joint
See sheet ___ of ___ for details.

2'-0" Dowel rods in 15'-0"
Holes drilled and grouted in cap to each beam. Cost included with Precast Bridge Approach Slab.

1 1/8" Fabric bearing pads

Concrete Superstructure

Notes:

The joint opening shall be adjusted for temperature per Article 520.04 of the Standard Specifications. However, since this detail is for jointless structures, the length of bridge used to calculate the adjustment shall be equal to half the total bridge length plus the length of the bridge approach slab.

After precast bridge approach slabs have been erected, holes shall be drilled into abutment and anchor beams placed. Dowel holes shall be filled with non-shrink grout to top of precast slab and cured according to Article 1005.13(k) or 1005.13(k) of the Standard Specifications for a minimum of 24 hours before casting the shear keys and wearing surface.

Any concrete poured monolithically with the wearing surface, such as curbs, shall not be paid for separately, but will be included in the cost of Concrete Wearing Surface, 5". The strip seal shall extend 6" beyond the edge of the approach slab on each end. Parapet concrete shall be paid for as Concrete Superstructure.

Approach footing concrete shall be paid for as Concrete Structures.

The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf.

Cost of excavation for approach footing included with Concrete Structures.

The strip seal shall extend 6" beyond the edge of the approach slab on each end. Parapet concrete shall be paid for as Concrete Superstructure.

The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf.

Cost of excavation for approach footing included with Concrete Structures.

Parapet concrete shall be paid for as Concrete Superstructure.

For Granular Backfill for Structures and drainage treatment details, see sheet ___ of ___.

Cost of anchor bolt assemblies included with Concrete Superstructure.

Shape 1'-2"

= FED. AID PROJECT
OF Cu. Yd. SHEETS
COUNTY Sq. Ft.

= #5 b10(E)

MODEL NAME
FILE NAME:
FILE L
DATE
TIME

Cost of anchor bolt assemblies included with Concrete Superstructure.

Threaded 1" End of parapet
Locknut and washer

1" Ø ANCHOR BOLT
(Anchor bolt assemblies shall be galvanized according to Article 1006.09 of the Standard Specifications. Cost of anchor bolt assemblies included with Concrete Superstructure)

BAR a10(E) BAR d11(E)
BAR d10(E) BAR a12(E)
BAR d10(E)
BAR d11(E)
BAR a12(E)
BAR a11(E)
BAR d10(E)
BAR a10(E)
BAR d11(E)

BA-P-39CS-R(≤30°) 6-15-2019
(Length: 36" min. width, 72" max. width)

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION

PRECAST BRIDGE APPROACH SLAB
STRUCTURE NO.

BILL OF MATERIAL

TWO APPROACHES

Bar No. Size Length Shape
a10(E) #5 #5
a11(E) #4 #4
d10(E) #4 8" 7" h
a12(E) #4 #4
b10(E) 40 #4 14" d
b11(E) 60 #5 #5
b12(E) 80 #5 #5

Concrete Approach
Concrete Structures
Reinforcement Bars
Epoxy Coated Reinforcement Bars
Precast Bridge Approach Slab
Concrete Wearing Surface

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

PRECAST BRIDGE APPROACH SLAB
STRUCTURE NO.

BILL OF MATERIAL

TWO APPROACHES

Bar No. Size Length Shape
a10(E) #5 #5
a11(E) #4 #4
d10(E) #4 8" 7" h
a12(E) #4 #4
b10(E) 40 #4 14" d
b11(E) 60 #5 #5
b12(E) 80 #5 #5

Concrete Approach
Concrete Structures
Reinforcement Bars
Epoxy Coated Reinforcement Bars
Precast Bridge Approach Slab
Concrete Wearing Surface

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

PRECAST BRIDGE APPROACH SLAB
STRUCTURE NO.

BILL OF MATERIAL

TWO APPROACHES

Bar No. Size Length Shape
a10(E) #5 #5
a11(E) #4 #4
d10(E) #4 8" 7" h
a12(E) #4 #4
b10(E) 40 #4 14" d
b11(E) 60 #5 #5
b12(E) 80 #5 #5

Concrete Approach
Concrete Structures
Reinforcement Bars
Epoxy Coated Reinforcement Bars
Precast Bridge Approach Slab
Concrete Wearing Surface

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

PRECAST BRIDGE APPROACH SLAB
STRUCTURE NO.

BILL OF MATERIAL

TWO APPROACHES

Bar No. Size Length Shape
a10(E) #5 #5
a11(E) #4 #4
d10(E) #4 8" 7" h
a12(E) #4 #4
b10(E) 40 #4 14" d
b11(E) 60 #5 #5
b12(E) 80 #5 #5

Concrete Approach
Concrete Structures
Reinforcement Bars
Epoxy Coated Reinforcement Bars
Precast Bridge Approach Slab
Concrete Wearing Surface

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

PRECAST BRIDGE APPROACH SLAB
STRUCTURE NO.

BILL OF MATERIAL

TWO APPROACHES

Bar No. Size Length Shape
a10(E) #5 #5
a11(E) #4 #4
d10(E) #4 8" 7" h
a12(E) #4 #4
b10(E) 40 #4 14" d
b11(E) 60 #5 #5
b12(E) 80 #5 #5

Concrete Approach
Concrete Structures
Reinforcement Bars
Epoxy Coated Reinforcement Bars
Precast Bridge Approach Slab
Concrete Wearing Surface

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

PRECAST BRIDGE APPROACH SLAB
STRUCTURE NO.

BILL OF MATERIAL

TWO APPROACHES

Bar No. Size Length Shape
a10(E) #5 #5
a11(E) #4 #4
d10(E) #4 8" 7" h
a12(E) #4 #4
b10(E) 40 #4 14" d
b11(E) 60 #5 #5
b12(E) 80 #5 #5

Concrete Approach
Concrete Structures
Reinforcement Bars
Epoxy Coated Reinforcement Bars
Precast Bridge Approach Slab
Concrete Wearing Surface

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

PRECAST BRIDGE APPROACH SLAB
STRUCTURE NO.

BILL OF MATERIAL

TWO APPROACHES

Bar No. Size Length Shape
a10(E) #5 #5
a11(E) #4 #4
d10(E) #4 8" 7" h
a12(E) #4 #4
b10(E) 40 #4 14" d
b11(E) 60 #5 #5
b12(E) 80 #5 #5

Concrete Approach
Concrete Structures
Reinforcement Bars
Epoxy Coated Reinforcement Bars
Precast Bridge Approach Slab
Concrete Wearing Surface
Bridge Approach Slab
-11" x - Precast

For Approach Footing

DETAIL 'A'

- Approach Footing
- Top and bottom of Approach Footing. See Sec. A-A

TOP AND BOTTOM ELEVATIONS

FOR APPROACH FOOTING

Approach

<table>
<thead>
<tr>
<th>Point</th>
<th>Top</th>
<th>Bottom</th>
<th>Top</th>
<th>Bottom</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Fabric bearing pads at the expansion end shall be recessed ¼" into the approach footing and bonded. Adjusting shims, when required, shall be bonded to the top of the fabric bearing pads.

PLAN

Bridge Approach Slabs
-11" x - Precast

NEAR ABUTMENT

CROSS SECTION

(Reprinted)
Notes:
The joint opening shall be adjusted for temperature per Article 520.04 of the Standard Specifications. However, since this detail is for jointless structures, the length of bridge used to calculate the adjustment shall be equal to half the total bridge length plus the length of the bridge approach slab.
After precast bridge approach slabs have been erected, holes shall be drilled into approach end and anchor dowels placed. Dowel holes shall be filled with non-shrink grout to top of precast slab and cured according to Article 1009.13a(3) or 1020.13a(3) of the Standard Specifications for a minimum of 24 hours before casting the shear keys and wearing surface.
Any concrete poured monolithically with the wearing surface, such as curbs, shall not be paid for separately, but will be included in the cost of Concrete Wearing Surface, 5". The strip seal shall extend 6" beyond the edge of the approach slab on each end. Parapet concrete shall be paid for as Concrete Superstructure. Approach footing concrete shall be paid for as Concrete Structures. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Cost of excavation for approach footing included with Concrete Structures. For granular Backfill for Structures and drainage treatment details, see sheet GLL.
Cost of cellular polystyrene is included with Concrete Superstructure. A strip seal is required at the approach slab to abutment connection. The strip seal shall extend 6" beyond the edge of the approach slab on each end. After precast bridge approach slabs have been erected, holes shall be drilled into approach end and anchor dowels placed. Dowel holes shall be filled with non-shrink grout to top of precast slab and cured according to Article 1009.13a(3) or 1020.13a(3) of the Standard Specifications for a minimum of 24 hours before casting the shear keys and wearing surface.
Any concrete poured monolithically with the wearing surface, such as curbs, shall not be paid for separately, but will be included in the cost of Concrete Wearing Surface, 5". The strip seal shall extend 6" beyond the edge of the approach slab on each end. Parapet concrete shall be paid for as Concrete Superstructure. Approach footing concrete shall be paid for as Concrete Structures. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Cost of excavation for approach footing included with Concrete Structures. For granular Backfill for Structures and drainage treatment details, see sheet GLL.
Cost of cellular polystyrene is included with Concrete Superstructure.

The joint opening shall be adjusted for temperature per Article 520.04 of the Standard Specifications. However, since this detail is for jointless structures, the length of bridge used to calculate the adjustment shall be equal to half the total bridge length plus the length of the bridge approach slab.
After precast bridge approach slabs have been erected, holes shall be drilled into approach end and anchor dowels placed. Dowel holes shall be filled with non-shrink grout to top of precast slab and cured according to Article 1009.13a(3) or 1020.13a(3) of the Standard Specifications for a minimum of 24 hours before casting the shear keys and wearing surface.
Any concrete poured monolithically with the wearing surface, such as curbs, shall not be paid for separately, but will be included in the cost of Concrete Wearing Surface, 5". The strip seal shall extend 6" beyond the edge of the approach slab on each end. Parapet concrete shall be paid for as Concrete Superstructure. Approach footing concrete shall be paid for as Concrete Structures. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Cost of excavation for approach footing included with Concrete Structures. For granular Backfill for Structures and drainage treatment details, see sheet GLL.
Cost of cellular polystyrene is included with Concrete Superstructure.

The joint opening shall be adjusted for temperature per Article 520.04 of the Standard Specifications. However, since this detail is for jointless structures, the length of bridge used to calculate the adjustment shall be equal to half the total bridge length plus the length of the bridge approach slab.
After precast bridge approach slabs have been erected, holes shall be drilled into approach end and anchor dowels placed. Dowel holes shall be filled with non-shrink grout to top of precast slab and cured according to Article 1009.13a(3) or 1020.13a(3) of the Standard Specifications for a minimum of 24 hours before casting the shear keys and wearing surface.
Any concrete poured monolithically with the wearing surface, such as curbs, shall not be paid for separately, but will be included in the cost of Concrete Wearing Surface, 5". The strip seal shall extend 6" beyond the edge of the approach slab on each end. Parapet concrete shall be paid for as Concrete Superstructure. Approach footing concrete shall be paid for as Concrete Structures. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Cost of excavation for approach footing included with Concrete Structures. For granular Backfill for Structures and drainage treatment details, see sheet GLL.
Cost of cellular polystyrene is included with Concrete Superstructure.