<table>
<thead>
<tr>
<th>CELL/MODEL NAME</th>
<th>DESCRIPTION</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSD-1</td>
<td>Mechanical Splicer / Bar Splicer Details</td>
<td>1/1/2020</td>
</tr>
<tr>
<td>DS-11</td>
<td>Drainage Scupper, DS-11</td>
<td>1/1/2020</td>
</tr>
<tr>
<td>DS-12</td>
<td>Drainage Scupper, DS-12</td>
<td>1/1/2020</td>
</tr>
<tr>
<td>DS-12M10</td>
<td>Drainage Scupper, DS-12M10</td>
<td>1/1/2020</td>
</tr>
<tr>
<td>DS-33</td>
<td>Drainage Scupper, DS-33</td>
<td>1/1/2020</td>
</tr>
<tr>
<td>E-AS</td>
<td>Top of approach slab elevations</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>E-AS1</td>
<td>Top of approach slab elevations adjusted for grinding</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>E-S</td>
<td>Top of slab elevations</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>E-S1</td>
<td>Top of slab elevations adjusted for grinding</td>
<td>1/14/2019</td>
</tr>
<tr>
<td>EJ-SS</td>
<td>Preformed joint strip seal</td>
<td>1/1/2020</td>
</tr>
<tr>
<td>EJ-SS-S (1 of 3)</td>
<td>Preformed joint strip seal, with sidewalk</td>
<td>1/1/2020</td>
</tr>
<tr>
<td>EJ-SS-S (2 of 3)</td>
<td>Preformed joint strip seal, with sidewalk</td>
<td>1/1/2020</td>
</tr>
<tr>
<td>EJ-SS-S (3 of 3)</td>
<td>Preformed joint strip seal, with sidewalk</td>
<td>1/1/2020</td>
</tr>
<tr>
<td>SB-1</td>
<td>Cantilever forming brackets (W27 and smaller)</td>
<td>2/17/2017</td>
</tr>
<tr>
<td>SFP 39-44</td>
<td>Slip-formed parapet; Constant-slope (39" or 44")</td>
<td>1/1/2020</td>
</tr>
<tr>
<td>DATE</td>
<td>REVISION HISTORY</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>8/11/2017</td>
<td>• Performed a complete overhaul of our performed joint strip seal base sheet EJ-SSJ including:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1) Removed deeper locking edge rails and replaced with shallow version.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2) Added sliding plates for sidewalks to meet ADA requirements.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) Changed the configuration of locking edge rails under sidewalks and medians to remain at the deck level.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4) Created two base sheet versions one with sidewalks and medians (EJ-SS-S) and one without (EJ-SS).</td>
<td></td>
</tr>
<tr>
<td>1/14/2019</td>
<td>• Clarified note about deck grinding on E-S1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Removed and archived base sheet SFP 34-42.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Added base sheet SFP 39-44 due to the introduction of constant-slope parapets.</td>
<td></td>
</tr>
<tr>
<td>1/1/2020</td>
<td>• Updated bar splicer sheet for clarity.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fixed errors on various scupper sheets including revised notes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Replaced DS-33 scupper with a new improved version.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Revised strip seal base sheets for constant slope parapets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• General drafting revisions.</td>
<td></td>
</tr>
</tbody>
</table>
Threaded splicer bar length = min. lap length + 1\(\frac{3}{4}\) + thread length

* Epoxy not required on Bar Splicer Assembly components used in conjunction with black bars.

Notes:
- Splicer bars shall be deformed with threaded ends and have a minimum 60 ksi yield strength.
- All reinforcement shall be lapped and tied to the splicer bars.
- Splicer assemblies shall be epoxy coated according to the requirements for reinforcement bars. See Section 508 of the Standard Specifications.
- See approved list of bar splicer assemblies and mechanical splicers for alternatives.
Drill and tap scupper frame for 1/2-13 UNC stainless steel bolts with lock washers 4 locations

Drill and tap scupper frame for 1/2-13 UNC threaded Anchor rods 4 locations

Note:
All cast iron parts shall be gray iron conforming to the requirements of AASHTO M105, Class 35B and AASHTO M306. Bolts, anchor rods, nuts and washers shall be according to ASTM A325 and shall be galvanized according to AASHTO M322. As an alternate stainless steel may be used. Stainless steel hardware shall be according to Article 1006.22 of the Standard Specifications. Structural steel weldments of equal sections and of the same configuration may be substituted for the cast iron scupper frames and downsputs; however, the scupper grates shall remain cast iron. Fillet or full penetration welds shall be used for the weldments. Details shall be submitted to the Engineer for approval. Structural steel scupper frames and downsputs, when utilized, shall be galvanized according to AASHTO M111. As an alternate fiberglass may be used for downsputs according to ASTM D2996 with a short-time rupture strength hold tensile stress of 30,000 psi min. in lieu of the cast iron or structural steel. Exterior surfaces of downsputs and exterior exposed surfaces of the scupper frame below deck shall be treated as specified on sheet of . Protective Coat is not applied to the scupper. The Contractor shall take appropriate measures to assure that.

Cost of the grate, frame, downspout, anchor rods, nuts and washers including complete installation of the scupper shall be paid for at the contract unit price for Drainage Scupper, DS-11.

Notes:
- Stainless steel hardware shall be according to Article 1006.22 of the Standard Specifications.
- As an alternate, fiberglass may be used for downspouts according to ASTM D2996 with a short-time rupture strength hold tensile stress of 30,000 psi min. in lieu of the cast iron or structural steel.
- Exterior surfaces of downsputs and exterior exposed surfaces of the scupper frame below deck shall be treated as specified on sheet of .
- Protective Coat is not applied to the scupper.
- The Contractor shall take appropriate measures to assure that.

Cost of the grate, frame, downspout, anchor rods, nuts and washers including complete installation of the scupper shall be paid for at the contract unit price for Drainage Scupper, DS-11.

The Contractor shall take appropriate measures to assure that the protective coat is not applied to the scupper.
All cast iron parts shall be gray iron conforming to the requirements of AASHTO M105, Class 35B and AASHTO M306. Bolts, anchor rods, nuts, and washers shall be according to ASTM A320 and shall be galvanized according to AASHTO M232. As an alternate stainless steel may be used. Structural steel weldments of equal sections and of the same configuration may be substituted for the cast iron scupper frames and downspouts; however, the scupper grates shall remain cast iron. Fillet or full penetration welds shall be used for the weldments. Details shall be submitted to the Engineer for approval. Structural steel scupper frames and downspouts, when utilized, shall be galvanized according to AASHTO M111. As an alternate fiberglass may be used for downspouts according to ASTM D2996 with a short-time rupture strength hold tensile stress of 30,000 psi min. in lieu of the cast iron or structural steel. Exterior surfaces of downspouts and exterior exposed surfaces of the scupper frame below deck shall be treated as specified on sheet of . The Contractor shall take appropriate measures to assure that Protective Coat is not applied to the scupper. Cost of the grate, frame, downspout, anchor rods, nuts and washers including complete installation of the scupper shall be paid for at the contract unit price for Drainage Scupper, DS-12.

Notes:
- As an alternate stainless steel may be used.
- Stainless steel hardware shall be according to Article 1006.29(d) of the Standard Specifications.
- Bolt circle. (2 blind holes
- Drill and tap 8 holes for Ø-13 UNC bolts on 9" bolt circle. (2 blind holes are 1/2" deep, 6 thru holes)
- Protective Coat is not applied to the scupper.
- Bolts, anchor rods, nuts and washers shall be according to ASTM A320 and shall be galvanized according to AASHTO M232.
- All cast iron parts shall be gray iron conforming to the requirements of AASHTO M105, Class 35B and AASHTO M306.
All cast iron parts shall be gray iron conforming to the requirements of AASHTO M185, Class 33B and AASHTO M906. Bolts, anchor rods, nuts and washers shall be according to ASTM A320 and shall be galvanized according to AASHTO M232. Stainless steel hardware shall be according to Article 1006.29(d) of the Standard Specifications.

Structural steel weldments of equal sections and of the same configuration may be substituted for the cast iron scupper frames and downspouts; however, the scupper grates shall remain cast iron. Fillet or full penetration welds shall be used for the weldments. Details shall be submitted to the Engineer for approval. Structural steel scupper frames and downspouts, when utilized, shall be galvanized according to AASHTO M111.

As an alternate, fiberglass may be used for downspouts according to ASTM D2996 with a short-time rupture strength hoop tensile stress of 30,000 psi mm, in lieu of the cast iron or structural steel. Exterior surfaces of downspouts and exterior exposed surfaces of the scupper frame below deck shall be treated as specified on sheet of.

The Contractor shall take appropriate measures to assure that Protective Coat is not applied to the scupper. Cost of the grate, frame, downspout, anchor rods, nuts and washers including complete installation of the scupper shall be paid for at the contract unit price for Drainage Scupper, DS-12M10.
STATE OF ILLINOIS

DEPARTMENT OF TRANSPORTATION

DRAINAGE SCUPPER, DS-33M

BILL OF MATERIAL

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QUANTITY</th>
<th>UNIT PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage Scupper, DS-33</td>
<td>1000</td>
<td>$</td>
</tr>
</tbody>
</table>

SECTION A-A

For scupper: location relative to parapet.

SECTION B-B

FIRST VANE DETAIL

SECOND VANE DETAIL

GRATE BOLT HOLE DETAIL

Drill and tap scupper frame for 1/4" Ø-13 UNC stainless steel bolts with lock washers at 4 locations.

FLANGE ONLY

Drill and tap 8 holes for 1/4" Ø-13 UNC bolts on 9/16" Ø bolt circle.

Notes:

- All cast iron parts shall be gray iron conforming to the requirements of AASHTO M185 and AASHTO M306. Bolts, nuts and washers shall be according to ASTM A307 and shall be galvanized according to AASHTO M332. As an alternate stainless steel may be used.
- Stainless steel hardware shall be according to Article 1006.29(b) of the Standard Specifications.
- Structural steel weldments of equal sections and of the same configuration may be substituted for the cast iron scupper frames and downspouts; however, the scupper grates shall remain cast iron. Fillet or full penetration welds shall be used for the weldments. Details shall be submitted to the Engineer for approval.
- Structural steel scupper frames and downspouts, when utilized, shall be galvanized according to AASHTO M111.
- As an alternate, fiberglass may be used for downspouts according to ASTM D2996 with a short-time rupture strength hoop tensile stress of 30,000 psi min. in lieu of the cast iron or structural steel.
- Exterior surfaces of downspouts and exterior exposed surfaces of the scupper frame below deck shall be treated as specified on sheet of .
- Protective Coat is not applied to the scupper. The Contractor shall take appropriate measures to assure that the protective coat is not applied to the scupper. Cost of the grate, frame, downspout, nuts and washers including complete installation of the scupper shall be paid for at the contract unit price for Drainage Scupper, DS-33.
- As an alternate, fiberglass may be used for downspouts according to ASTM D2996 with a short-time rupture strength hoop tensile stress of 30,000 psi min. in lieu of the cast iron or structural steel.
- Exterior surfaces of downspouts and exterior exposed surfaces of the scupper frame below deck shall be treated as specified on sheet of .
- Protective Coat is not applied to the scupper. The Contractor shall take appropriate measures to assure that the protective coat is not applied to the scupper. Cost of the grate, frame, downspout, nuts and washers including complete installation of the scupper shall be paid for at the contract unit price for Drainage Scupper, DS-33.
- As an alternate, fiberglass may be used for downspouts according to ASTM D2996 with a short-time rupture strength hoop tensile stress of 30,000 psi min. in lieu of the cast iron or structural steel.
- Exterior surfaces of downspouts and exterior exposed surfaces of the scupper frame below deck shall be treated as specified on sheet of .
- Protective Coat is not applied to the scupper. The Contractor shall take appropriate measures to assure that the protective coat is not applied to the scupper. Cost of the grate, frame, downspout, nuts and washers including complete installation of the scupper shall be paid for at the contract unit price for Drainage Scupper, DS-33.
DEAD LOAD DEFLECTION DIAGRAM

(Includes weight of concrete only.)

Note:
The above deflections are not to be used in the
field if the engineer is working from the grade elevations
adjusted for dead load deflections as shown below.

To determine "t": After all structural steel has been erected, elevations of the top
flanges of the beams shall be taken at intervals shown below. These elevations
subtracted from the "Theoretical Grade Elevations Adjusted for Dead Load Deflection"
shown below, minus slab thickness, equals the fillet heights "t" above top flange of
beams.

<table>
<thead>
<tr>
<th>Location</th>
<th>Station</th>
<th>Offset</th>
<th>Theoretical Grade Elevations Adjusted For Dead Load Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FILLET HEIGHTS

<table>
<thead>
<tr>
<th>Location</th>
<th>Station</th>
<th>Offset</th>
<th>Theoretical Grade Elevations Adjusted For Dead Load Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEAD LOAD DEFLECTION DIAGRAM

(Includes weight of concrete only.)

Note:
The above deflections are not to be used in the
field if the engineer is working from the grade elevations
adjusted for dead load deflections as shown below.

To determine "t": After all structural steel has been erected, elevations of the top
flanges of the beams shall be taken at intervals shown below. These elevations
subtracted from the "Theoretical Grade Elevations Adjusted for Dead Load Deflection"
shown below, minus slab thickness, equals the fillet heights "t" above top flange of
beams.

<table>
<thead>
<tr>
<th>Location</th>
<th>Station</th>
<th>Offset</th>
<th>Theoretical Grade Elevations Adjusted For Dead Load Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FILLET HEIGHTS

<table>
<thead>
<tr>
<th>Location</th>
<th>Station</th>
<th>Offset</th>
<th>Theoretical Grade Elevations Adjusted For Dead Load Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DEAD LOAD DEFLECTION DIAGRAM
(Includes weight of concrete only.)

Note: The above deflections are not to be used in the field if the engineer is working from the grade elevations adjusted for dead load deflections and grinding as shown below.

The slab is to be ground after curing to achieve smoothness, but the slab is not to be ground to elevations below the "Theoretical Grade Elevations" shown below. For grinding the deck, see Special Provisions.

To determine "t": After all structural steel has been erected, elevations of the top flanges of the beams shall be taken at intervals shown below. These elevations subtracted from the "Theoretical Grade Elevations Adjusted for Dead Load Deflection and Grinding" shown below, minus the initial slab thickness prior to grinding, equals the fillet heights "t" above top flange of beams.

The slab is to be ground after curing to achieve smoothness, but the slab is not to be ground to elevations below the "Theoretical Grade Elevations" shown below. For grinding the deck, see Special Provisions.

FILLET HEIGHTS
Notes:
- The strip seal shall be made continuous and shall have a minimum thickness of 0.25. The configuration of the strip seal shall match the configuration of the locking edge rails. Open or "webbed" strip seal grand configurations are not permitted. The grand shall be sized for a maximum rated movement of 4 inches.
- The locking edge rails depicted are for typical applications and are conceptual only. The actual configuration of the locking edge rails and matching strip seal may vary from manufacturer to manufacturer; provided they fit the application and meet the minimum anchorage requirements. Flanged edge rails, however, will not be allowed. Locking edge rails may exceed the 4½" maximum depth provided the anchorage system is revised according to the manufacturer's recommendation.
- The manufacturer's recommended installation methods shall be followed. All steel components shall be galvanized after fabrication according to Article 920 of the Standard Specifications. The Maximum span between locking edge rail segments shall be 3½" and sealed with a suitable sealant; however, any rail joint within 10' measured perpendicular to the face of the curb or parapet shall be welded as shown in the locking edge rail splice detail.
- Cost of parapet sliding plates, embedded plates, and anchorage studs included with Preformed Joint Strip Seal. 39" constant slope barrier shown, 44" constant slope barrier similar as noted. The concrete opening below the strip seal will vary based on the locking edge rail chosen by the Contractor. Deck and parapet lengths shown elsewhere in the plans are dimensional to the concrete opening, not the joint opening, and are based on the rolled locking edge rail. If the Contractor elects to use a different locking edge rail, dimensional adjustments may be required. One exception to this would be the strip seal joint at the end of the precast bridge approach slab. For these cases the pavement connector length shall be adjusted, not the length of the bridge approach slab.

BILL OF MATERIAL

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preformed Joint Strip Seal</td>
<td>Foot</td>
<td></td>
</tr>
</tbody>
</table>

SECTION A-A

- Granite or fused glass headed studs conforming to Article 2008.3.2 of the SPC Specifications, automatically end welded.

SECTION 2-2

- Concrete flush with back face of 3/8" plate.

SECTION B-B

- Concrete flush with back face of 3/8" plate.

DETAIL A

- Concrete flush with back face of 3/8" plate.

EJ-55

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION
PREFORMED JOINT STRIP SEAL
STRUCTURE NO.

1-1-2020
The strip seal shall be made continuous and shall have a minimum thickness of 5/8". The configuration of the strip seal shall match the configuration of the locking edge rails. Open or "webbed" strip seal gland configurations are not permitted. The gland shall be sized for a maximum rated movement of 4 inches.

The locking edge rails depicted are configured for typical applications and are conceptual only. The actual configuration of the locking edge rails and matching strip seal may vary from manufacturer to manufacturer based on the application and meet the minimum anchorage shown. Rolled edge rails, however, will not be allowed. Locking edge rails may exceed the 4½" maximum depth provided the anchorage system is revised according to the manufacturer's recommendation.

The manufacturer's recommended installation methods shall be followed. All steel components shall be galvanized after fabrication according to Article 520.03 of the Standard Specifications. The Maximum space between locking edge rail segments shall be 5/8" and sealed with a suitable sealant; however, any rail joint within 10' measured perpendicular to the face of the curb or parapet shall be welded as shown in the locking edge rail splice detail.

The top surface of sidewalks sliding plates shall have a sealed pattern according to ASTM A166. Cost of parapet sliding plates, sidewalk sliding plates, embedded plates, anchorage studs, and expansion anchors included with Preformed Joint Strip Seal. 39° constant slope barrier shown, 44° constant slope barrier similar as noted.

The concrete opening below the strip seal will vary based on the locking edge rail chosen by the Contractor. Deepl and parapet lengths shown elsewhere in the plans are dimensioned to the concrete opening, not the joint opening, and are based on the rolled locking edge rail. If the Contractor elects to use a different locking edge rail, dimensional adjustments may be required. One exception to this would be the strip seal joint at the end of the precast bridge approach slab. For these cases the pavement connector length shall be adjusted, not the length of the bridge approach slab.

The locking edge rails depicted are configured for typical applications and are conceptual only. The locking edge rails and matching strip seal may vary from manufacturer to manufacturer based on the application and meet the minimum anchorage shown. Rolled edge rails, however, will not be allowed. Locking edge rails may exceed the 4½" maximum depth provided the anchorage system is revised according to the manufacturer's recommendation.

The manufacturer's recommended installation methods shall be followed. All steel components shall be galvanized after fabrication according to Article 520.03 of the Standard Specifications. The Maximum space between locking edge rail segments shall be 5/8" and sealed with a suitable sealant; however, any rail joint within 10' measured perpendicular to the face of the curb or parapet shall be welded as shown in the locking edge rail splice detail.

The top surface of sidewalks sliding plates shall have a sealed pattern according to ASTM A166. Cost of parapet sliding plates, sidewalk sliding plates, embedded plates, anchorage studs, and expansion anchors included with Preformed Joint Strip Seal. 39° constant slope barrier shown, 44° constant slope barrier similar as noted.

The concrete opening below the strip seal will vary based on the locking edge rail chosen by the Contractor. Deepl and parapet lengths shown elsewhere in the plans are dimensioned to the concrete opening, not the joint opening, and are based on the rolled locking edge rail. If the Contractor elects to use a different locking edge rail, dimensional adjustments may be required. One exception to this would be the strip seal joint at the end of the precast bridge approach slab. For these cases the pavement connector length shall be adjusted, not the length of the bridge approach slab.
SECTION AT RAISED SIDEWALK

- ⅝" Ø x 4" Stainless steel countersunk expansion anchors at ±9" cts.
- ⅝" Sidewalk Sliding Plate
- Top of locking edge rail
- Top of deck
- Min. lap 6"

PLAN AT RAISED SIDEWALK

- ⅝" Sidewalk Sliding Plate
- 2" Chamfer

SECTION C-C

- ⅝" Ø x 4" Stainless steel countersunk expansion anchors at ±9" cts.
- Top of sidewalk
- Top of deck

SECTION AT MEDIAN

For skews > 30°, chamfer acute corners 2" similar to sidewalk

SECTION D-D

(at WR. E14)

- Top of median
- Top of locking edge rail
- Top of deck

TRIMETRIC VIEW

- Raised pattern options on vertical face

STATE OF ILLINOIS

DEPARTMENT OF TRANSPORTATION

PREFORMED JOINT STRIP SEAL - SIDEWALK

STRUCTURE NO.

EJ-SS-S

1-1-2020

(1 of 3)
SECTION AT DECK LEVEL SIDEWALK

(Skews > 30° shown. Skews ≤ 30° similar except as shown in plan view.)

DETAIL B

PLAN AT DECK LEVEL SIDEWALK

(FOR SKEWS > 30°)

SECTION E-E

SECTION F-F

STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION
PREFORMED JOINT STRIP SEAL - SIDEWALK
STRUCTURE NO.

EJ-55-S
1-1-2000

CONTRACT NO.
DEPARTMENT OF TRANSPORTATION
STATE OF ILLINOIS

USER NAME

PLOT DATE

PLOT SCALE

PLOT SCALE

USER NAME

DATE

DATE

$TIME$

$DATE$

MODEL:

MODEL NAME:

FILE:

FILE NAME:

EJ-SS-S

When cantilever forming brackets are used, the work shall be done according to Article 503.06(b) of the Standard Specifications, except as modified below and in the details shown on this sheet.

The finishing machine rails shall be placed on the top flange of the exterior beams.

The finishing machine rails shall be placed as shown between webs of beams in each bay.

For Standard construction, or Stage Construction the Hardwood bracing materials shall be placed as shown between webs of beams in each bay.

Stage Construction Joint

Finishing machine rail

Hardwood 4" x 4" blocks

Ties at 4'-0" cts.

FORM BRACES FOR
STAGE CONSTRUCTION

Symmetrical about
4'-0" cts.

Ties at 4'-0" cts.

FINISHING MACHINE RAIL

FORM BRACES FOR
STANDARD CONSTRUCTION

Hardwood 4" x 4" blocks

at 4'-0" cts.

at 4'-0" cts.
Parapet Section

- **39" Constant-Slope**
 - (Showing dimensions, (E), and 1/4" GFRP rebar)
 - *See Superstructure Details.

- **44" Constant-Slope**
 - (Showing dimensions, (E), and 1/4" GFRP rebar)
 - *See Superstructure Details.

GFRP Rebar Stiffening Detail

Place as shown in parapet section at each parapet joint location.

Notes:
- All dimensions shall remain the same as shown on superstructure details, except dimension A which is to be revised as shown. Additional concrete needed to revise dimension A = 0.00348 cu. yds./ft. for 39" and 44" parapets.
- Place full depth aluminum sheets as shown on superstructure details.
- Replace all cork joint filler locations with a full thickness saw cut.
- Steel superstructure shown. Other superstructure types similar.