May 26, 2010

CIRCULAR LETTER 2010-03

Sign Retrospectivity Assessment/Management Method

COUNTY ENGINEERS/SUPERINTENDENTS OF HIGHWAYS
MUNICIPAL ENGINEERS/DIRECTORS OF PUBLIC WORKS/MAYORS
CONSULTING ENGINEERS

Revision Number 2 to the 2003 Edition of the Manual on Uniform Traffic Control Devices (MUTCD) requires the maintenance of minimum retro-reflectivity standards for traffic control signs. Local Public Agencies (LPA) have until January 2012 to establish and implement one of the following sign assessment or management methods to maintain minimum levels of sign reflectivity.

Visual Nighttime Inspection – The reflectivity of an existing sign is assessed by a trained sign inspector conducting a visual inspection from a moving vehicle during nighttime conditions. Signs that are visually identified by the inspector to have reflectivity below the minimum levels should be replaced.

Measured Sign Reflectivity – Sign reflectivity is measured using a reflectometer. Signs with reflectivity below the minimum levels should be replaced.

Expected Sign Life – When signs are installed, the installation/manufacturer date is labeled or recorded so that the age of a sign is known. The age of the sign is compared to the expected sign life. The expected sign life is based on the experience of sign reflectivity degradation in a geographic area compared to the minimum levels. Signs older than the expected life should be replaced.

Blanket Replacement – All signs in an area/corridor, or of a given type, should be replaced at specified intervals. This eliminates the need to assess reflectivity or track the life of individual signs. The replacement interval is based on the expected sign life, compared to the minimum levels, for the shortest-life material used on the affected signs.
Control Signs – Replacement of signs in the field is based on the performance of a sample of control signs. The control signs might be a small sample located in a maintenance yard or a sample of signs in the field. The control signs are monitored to determine the end of retroreflective life for the associated signs. All field signs represented by the control sample should be replaced before the retroreflectivity levels of the control sample reach the minimum levels.

Other Methods – Other methods developed based on engineering studies can be used.

While not required, best practices recommend establishing a written assessment or management policy using a resolution or an ordinance according to your agency’s board or council process. The Bureau of Operations’ policy for the state highway system is attached for your review. The department has selected the Blanket Replacement Management Method using an expected sign life of 15 years for high-intensity prismatic sheeting.

In order to meet the compliance date, agencies should begin developing a comprehensive sign inventory. Once an agency knows the number, type, sign sheeting and condition of signs, the management or assessment method may be selected to optimize budgets, manpower, and sign life.

Please contact the Local Policy & Technology Unit at DOT.LocalPolicy@illinois.gov or (217) 785-5048 with any questions.

Sincerely,

Darrell W. Lewis, P. E.
Acting Engineer of Local Roads and Streets

Attachment
MEETING MUTCD MINIMUM MAINTAINED RETROREFLECTIVITY STANDARDS ON THE STATE HIGHWAY SYSTEM

General

Chapter 2 of the MUTCD requires signs to be maintained at minimum retroreflectivity standards and requires agencies to adopt one of several assessment or management methods to ensure compliance. On the state highway system, compliance shall be achieved by use of the Blanket Replacement method based upon a 15-year expected sign life for prismatic sheeting. This eliminates the need to assess retroreflectivity or track the life of individual signs. The MUTCD language recognizes that there may be some individual signs that do not meet the minimum retroreflectivity levels at a particular point in time. However, as long as an agency is maintaining signs in accordance with Section 2A.08 of the MUTCD, the FHWA will consider the agency to be in compliance.

After signs have been removed and shipped to the Central Sign Shop for recycling, random samples will be pulled and submitted to the Bureau of Materials and Physical Research. These samples will then be tested to assure the minimum retroreflectivity values are being met. Further, it will give the Department an opportunity to determine if a longer life expectancy can be achieved.

Conventional Highways

Each district shall replace all signs within one or more counties or along one or more entire routes each year so that every sign within the district is replaced on a 15-year cycle. The method adopted, by county or by route, shall be uniform within a district.

Damaged or deteriorated signs should continue to be repaired as needed. However, they still must be replaced at the same time as the county or route undergoes blanket replacement regardless of their anticipated remaining life. While this will result in some signs being replaced before their anticipated life expectancy is reached, the "waste" will be countered by savings in fuel and personnel costs achieved with blanket replacement.

When the replacement is scheduled the existing signs should be reviewed to ensure the messages and sizes conform to the latest MUTCD requirements and the signs continue to be required.

Freeways

Replacement and/or overlaying of guide and service signs on the Interstate system and on full-freeways constructed to Interstate standards will be scheduled and handled separately by the Highway Sign Shop so that each sign is replaced at least every 15 years.

Standard signs on freeways and freeway ramps are to be included with the blanket replacement of signs on conventional highways to be coordinated by the appropriate district.
Summary of Sign Retroreflectivity Maintenance Methods

A method must be implemented and in use by January 2012

<table>
<thead>
<tr>
<th>ASSESSMENT METHODS</th>
<th>EQUIPMENT NEEDS</th>
<th>INSPECTOR REGMTS</th>
<th>TIME DEMANDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retroreflectometer Inspection Vehicle</td>
<td>Any</td>
<td>(1)</td>
<td>Any</td>
</tr>
<tr>
<td>Calibration Signs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consistent Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparison Panels</td>
<td>Any</td>
<td>(1)</td>
<td>Any</td>
</tr>
<tr>
<td>PU or SUV</td>
<td></td>
<td>60+</td>
<td></td>
</tr>
<tr>
<td>Expected Sign Life</td>
<td></td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>Blanket Replacement</td>
<td></td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>Measured Retro</td>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
</tbody>
</table>

MATERIALS

(1) Not required in MUTCD, but might be beneficial
(2) Need training on operation of retroreflectometer

☑ Means "required"
Traffic signs provide important information to drivers at all times, both day and night. To be effective, their visibility must be maintained. The 2003 Manual on Uniform Traffic Control Devices (MUTCD) addresses sign visibility in several places, including Sections 1A.03, 1A.04, 1A.05, 2A.06, 2A.08, and 2A.22. These sections address factors such as uniformity, design, placement, operation, and maintenance. Previously, the MUTCD did not specify minimum retroreflectivity levels.

The second revision of the 2003 MUTCD introduces new language establishing minimum retroreflectivity levels that must be maintained for traffic signs. Agencies have until January 2012, to establish and implement a sign assessment or management method to maintain minimum levels of sign retroreflectivity. The compliance date for regulatory, warning, and ground-mounted guide signs is January 2015. For overhead guide signs and street name signs, the compliance date is January 2018. The new MUTCD language is shown on page 2 and 3 of this document.

The new standard in Section 2A.09 requires that agencies maintain traffic signs to a minimum level of retroreflectivity outlined in Table 2A-3 of the MUTCD. The Federal Highway Administration (FHWA) believes that this proposed change will promote safety while providing sufficient flexibility for agencies to choose a maintenance method that best matches their specific conditions.

Including Table 2A-3 in the MUTCD does not imply that an agency must measure the retroreflectivity of every sign. Rather, the new MUTCD language describes five methods that agencies can use to maintain traffic sign retroreflectivity at or above the minimum levels. Agencies can choose from these methods or combine them. Agencies are allowed to develop other appropriate methods based on engineering studies. However, agencies should adopt a consistent method that produces results that correspond to the values in Table 2A-3.

The new MUTCD language recognizes that there may be some individual signs that do not meet the minimum retroreflectivity levels at a particular point in time. As long as the agency with jurisdiction is maintaining signs in accordance with Section 2A.09 of the MUTCD, the agency will be considered to be in compliance. This document describes methods that can be used to maintain sign retroreflectivity at or above the MUTCD’s minimum maintained retroreflectivity levels.

RETOREFLECTIVITY MAINTENANCE

The MUTCD describes two basic types of methods that agencies can use to maintain sign retroreflectivity at or above the MUTCD minimum maintained retroreflectivity levels — assessment methods and management methods. The FHWA has identified and listed assessment and management methods for maintaining sign retroreflectivity in accordance with Section 2A.09. These methods are described on page four. A full report on these methods can be found at www.fhwa.dot.gov/retro.
New MUTCD Minimum Retroreflectivity Compliance Periods

- Four years for implementation and continued use of an assessment or management method that is designed to maintain traffic sign retroreflectivity at or above the established minimum levels;
- Seven years for replacement of regulatory, warning, and ground-mounted guide (except street name) signs that are identified using the assessment or management methods as failing to meet the established minimum levels; and
- Ten years for replacement of street name signs and overhead guide signs that are identified using the assessment or management method as failing to meet the established minimum levels.

New MUTCD Section 2A.09 Maintaining Minimum Retroreflectivity

Support:
Retroreflectivity is one of several factors associated with maintaining nighttime sign visibility (see Section 2A.22).

Standard:
Public agencies or officials having jurisdiction shall use an assessment or management method that is designed to maintain sign retroreflectivity at or above the minimum levels in Table 2A-3.

Support:
Compliance with the above Standard is achieved by having a method in place and using the method to maintain the minimum levels established in Table 2A-3. Provided that an assessment or management method is being used, an agency or official having jurisdiction would be in compliance with the above Standard even if there are some individual signs that do not meet the minimum retroreflectivity levels at a particular point in time.

Guidance:
Except for those signs specifically identified in the Option portion of this Section, one or more of the following assessment or management methods should be used to maintain sign retroreflectivity:

A. Visual Nighttime Inspection – The retroreflectivity of an existing sign is assessed by a trained sign inspector conducting a visual inspection from a moving vehicle during nighttime conditions. Signs that are visually identified by the inspector to have retroreflectivity below the minimum levels should be replaced.

B. Measured Sign Retroreflectivity – Retroreflectivity is measured using a retroreflectometer. Signs with retroreflectivity below the minimum levels should be replaced.

C. Expected Sign Life – When signs are installed, the installation date is labeled or recorded so that the age of a sign is known. The age of the sign is compared to the expected sign life. The expected sign life is based on the experience of sign retroreflectivity degradation in a geographic area compared to the minimum levels. Signs older than the expected life should be replaced.

D. Blanket Replacement – All signs in an area/corridor, or of a given type, should be replaced at specified intervals. This eliminates the need to assess retroreflectivity or track the life of individual signs. The replacement interval is based on the expected sign life, compared to the minimum levels, for the shortest-life material used on the affected signs.

E. Control Signs – Replacement of signs in the field is based on the performance of a sample of control signs. The control signs might be a small sample located in a maintenance yard or a sample of signs in the field. The control signs are monitored to determine the end of retroreflective life for the associated signs. All field signs represented by the control sample should be replaced before the retroreflectivity levels of the control sample reach the minimum levels.

F. Other Methods – Other methods developed based on engineering studies can be used.

Support:
Additional information about these methods is contained in the 2007 Edition of FHWA’s “Maintaining Traffic Sign Retroreflectivity” (see Section 1A.11).

Option:
Highway agencies may exclude the following signs from the retroreflectivity maintenance guidelines described in this Section:

A. Parking, Standing, and Stopping signs (R7 and R8 series)
B. Walking/Hitchhiking/Crossing signs (R9 series, R10-1 through R10-4b)
C. Adopt-A-Highway signs
D. All signs with blue or brown backgrounds
E. Bikeway signs that are intended for exclusive use by bicyclists or pedestrians
New MUTCD Table 2A-3. Minimum Maintained Retroreflectivity Levels

<table>
<thead>
<tr>
<th>SIGN COLOR</th>
<th>SHEETING TYPE (ASTM D4956-04)</th>
<th>ADDITIONAL CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beaded Sheeting</td>
<td>Prismatic Sheeting</td>
</tr>
<tr>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>White on Green</td>
<td>W*; G ≥ 7</td>
<td>W*; G ≥ 15</td>
</tr>
<tr>
<td></td>
<td>W*; G ≥ 7</td>
<td></td>
</tr>
<tr>
<td>Black on Yellow or Black on Orange</td>
<td>Y*; O*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y*; O*</td>
<td></td>
</tr>
<tr>
<td>White on Red</td>
<td>W ≥ 35; R ≥ 7</td>
<td></td>
</tr>
<tr>
<td>Black on White</td>
<td>W ≥ 50</td>
<td></td>
</tr>
</tbody>
</table>

1. The minimum maintained retroreflectivity levels shown in this table are in units of cd/lx/m² measured at an observation angle of 0.2° and an entrance angle of -4.0°.
2. For text and fine symbol signs measuring at least 1200 mm (48 in) and for all sizes of bold symbol signs.
3. For text and fine symbol signs measuring less than 1200 mm (48 in).

* This sheeting type should not be used for this color for this application.

BOLD SYMBOL SIGNS

- W1-1, -2 – Turn and Curve
- W1-3, -4 – Reverse Turn and Curve
- W1-5 – Winding Road
- W1-6, -7 – Large Arrow
- W1-8 – Chevron
- W1-10 – Intersection in Curve
- W1-15 – 270 Degree Loop
- W2-1 – Cross Road
- W2-2, -3 – Side Road
- W2-4, -5 – T and Y Intersection
- W2-6 – Circular Intersection
- W3-1 – Stop Ahead
- W3-2 – Yield Ahead
- W3-3 – Signal Ahead
- W3-5 – Speed Reduction: White retroreflectivity ≥ 50
- W3-1 – Speed Reduction: Red retroreflectivity ≥ 7
- W3-3 – Signal Ahead: Red retroreflectivity ≥ 7; Green retroreflectivity ≥ 7

FINE SYMBOL SIGNS – Symbol Signs Not Listed As Bold Symbol Signs

- W3-1 – Stop Ahead: Red retroreflectivity ≥ 7
- W3-2 – Yield Ahead: Red retroreflectivity ≥ 7; White retroreflectivity ≥ 35
- W3-3 – Signal Ahead: Red retroreflectivity ≥ 7; Green retroreflectivity ≥ 7
- W3-5 – Speed Reduction: White retroreflectivity ≥ 50
- W4-3 – Added Lane
- W6-3 – Two-Way Traffic
- W10-1, -2, -3, -4, -11, -12 –
- W11-2 – Pedestrian Crossing
- W11-3 – Deer Crossing
- W11-4 – Cattle Crossing
- W11-5 – Farm Equipment
- W11-6 – Snowmobile Crossing
- W11-7 – Equestrian Crossing
- W11-8 – Fire Station
- W11-9 – Truck Crossing
- W12-1 – Double Arrow
- W16-5p, -6p, -7p – Pointing Arrow Plaques
- W20-7a – Flagger
- W21-1a – Worker

SPECIAL CASES

- For non-diamond shaped signs such W14-3 (No Passing Zone), W4-4p (Cross Traffic Does Not Stop), or W13-1, -2, -3, -5 (Speed Advisory Plaques), use largest sign dimension to determine proper minimum retroreflectivity level.
ASSESSMENT METHODS

Assessment methods require evaluation of individual signs within an agency’s jurisdiction. There are two basic assessment methods — visual assessment and measured sign retroreflectivity.

1. **VISUAL ASSESSMENT**

Nighttime Inspection

In the visual nighttime inspection method, on-the-fly assessments of retroreflectivity are made by an inspector during nighttime conditions. The following recommendations provide general guidance for the inspections:

- Develop guidelines and procedures for inspectors to use in conducting the nighttime inspections and train inspectors in the use of these procedures.
- Conduct inspections at normal speed from the travel lane(s).
- Conduct inspections using low-beam headlights while minimizing interior vehicle lighting.
- Evaluate signs at typical viewing distances so that adequate time is available for an appropriate driving response.

One or more of the following procedures should be used to support visual inspections.

Calibration Signs Procedure

In this procedure, an inspector views a “calibration sign” prior to conducting the nighttime inspection described above. Calibration signs have known retroreflectivity levels at or above minimum levels. These signs are set up where the inspector can view the calibration signs in a manner similar to nighttime field inspections. The inspector uses the visual appearance of the calibration sign to establish the evaluation threshold for that night’s inspection activities. The following factors provide additional information on the use of this procedure:

- Calibration signs are needed for each color of sign in Table 2A-3.
- Calibration signs are viewed at typical viewing distances using the inspection vehicle.
- Calibration signs need to be properly stored between inspections so that their retroreflectivity does not deteriorate over time.
- Calibration sign retroreflectivity should be verified periodically.

Comparison Panels Procedure

Comparison panels are used to assess signs that have marginal retroreflectivity. The comparison panels are fabricated at retroreflectivity levels at or above the minimum levels. When the visual inspection identifies the retroreflectivity of a sign as marginal, a comparison panel is attached to the sign and the sign/panel combination is viewed and compared by the inspector.

Consistent Parameters Procedure

Nighttime inspections are conducted under similar factors that were used in the research to develop the minimum retroreflectivity levels. These factors include:

- Using a sport utility vehicle or pick-up truck to conduct the inspection.
- Using a model year 2000 or newer vehicle for the inspection.
- Using an inspector who is at least 60 years old.

2. **MEASURED SIGN RETROREFLECTIVITY**

In this method the retroreflectivity of a sign is measured and directly compared to the minimum level appropriate for that sign. ASTM E1709, Standard Test Method for Measurement of Retroreflective Signs Using a Portable Retroreflectometer, provides a standard method for measuring sign retroreflectivity.

An agency can choose to use either an assessment method or a management method, or a combination of the two. Agencies may develop other methods as long as they are documented in an engineering study and correspond to the values in Table 2A-3.