Learning Outcomes

1. At the end of this module, you will be able to:
2. Explain why traffic signals don’t “guarantee” safety: they assign the right of way
3. Identify signal timing techniques that favor ped crossings
4. Identify major conflicts: concurrent turn movements
5. Select protected turns to improve ped safety
Signalized Intersections Can Be Improved For Pedestrians By:

1. Using good geometric design
2. Placing islands to break up complex crossings
3. Placing crosswalks in logical locations
4. Improving convenience and ease of use of pedestrian pushbuttons and signals
5. Using techniques to reduce conflicts with turning vehicles

1, 2 & 3 addressed in earlier module
Traffic signals assign the of right of way, regulate the flow of traffic and create gaps

Traffic signals do not guarantee safety — in fact, signalized intersections have more crashes than non-signalized
Turn movements often result in conflicts
Traffic signals don’t ensure protection

Peds routinely ignore the light (usually quite safely)
Traffic signals don’t ensure protection

Pedestrians will cross where it’s convenient
Traffic signals don’t ensure protection

Red-light running

Concurrent left turns on Green

Pedestrians are at risk when crossing with the light
Lucky Escape
Improving convenience and ease of use of pedestrian signals

- Proper pushbutton placement
- Need and placement of pedestrian signal heads
- Signal timing for pedestrians
- Countdown Signals
- Intelligent Transportation Systems (ITS)
Proper Pushbutton Placement

MUTCD Recommendations:
- In line with crosswalk;
- Buttons at least 10’ apart;
- Between 1.5’ and 6’ from curb
- Button face parallel to xwalk

MUTCD Sec. 4E.08
Proper Pushbutton Placement

The MUTCD recommends these dimensions
Poor Pushbutton Placement

Inconspicuous

Too far from ramp
Poor Pushbutton Placement

Behind guardrail

Behind vegetation
Poor Pushbutton Placement

At back of pole

In front of pole

Portland OR Salem OR
Poor Pushbutton Placement

All of the Above?
Proper Pushbutton Placement

On side of pole

At top of ramp
LED tells peds the button works and the signal has received the call (like an elevator)

Tactile arrow gives direction to blind and sighted pedestrians
Requirement in the 2009 MUTCD

- Combination of sign legends and pushbutton placement shall clearly indicate which crosswalk signal is activated by each pushbutton.

MUTCD Sec. 2B.52 and Section 4E.08
Pedestrian Signals

(AKA Ped Heads/Pedestrian Indicators)

Need and Placement at Signalized Intersections

- In general, use signals wherever pedestrians may be present (if in doubt, install them)

2009 MUTCD Section 4E.03
Pedestrian signals should be provided, Otherwise pedestrians don’t know when to cross.
Lack of pedestrian signals on one way street:
- The pedestrian may not notice the signal
Ped head placement: close to crosswalk, visible to pedestrians, especially with long crosswalk

Height: 7’ – 10’

Place ped head here, not here

Poor example

Good example
Two-step signals: ensure pedestrians don’t see conflicting signals

These pedestrians kept walking, not noticing the separate signal for the 2nd half of the roadway
Accessible Pedestrian Signals (APS)
Accessible Pedestrian Signals (APS)

- Provide ped signal information in audible and vibrotactile format
- Benefit all pedestrians by providing redundancy
- The 2009 MUTCD describes the features of APS, but does not require them
- Future accessibility standards and future MUTCD editions will likely require APS for all ped signals
MUTCD Specifies
Pushbutton-integrated APS

- Not the loud Cuckoo/Chirps used in the past

- Key Features:
 - Speakers at the pushbutton
 - Pushbutton locator tone (Click to play sample locator tone)
 - Tactile arrow (described earlier)
 - Automatic volume adjustment (so tones are audible within 6 to 12 feet of the button)
 - APS location is critical to proper functioning (see standards described earlier)
APS WALK indications

- APS should have both audible and vibrotactile WALK indications
 - Audible WALK indication: tone or speech message during WALK
 - Vibrotactile WALK indication: tactile arrow (or other surface on button) vibrates during WALK
“Recall to Walk”

(Walk Signal Comes Up Automatically)
At high-use crosswalks, pedestrians should get a signal at every cycle.
Set pedestrian signals to recall to WALK when major street is set to recall to green.

Peds shouldn't have to push a button to cross the minor street.
Signal Timing & Walking Speeds
Use Short Signal Cycle Length

Long wait causes stacking: pedestrians wait in street, or don’t wait and cross against the signal
2003 (old) MUTCD requirements:

- 7 sec steady walk (peds may enter crosswalk); 4 sec “option”
- Pedestrian clearance time (flashing orange hand) calculated at 4’/sec curb-to-curb
- Example: 60’ crosswalk requires 15 sec
- Example: $15 + 7 = 22$ sec absolute minimum walk plus clearance
Pedestrian Walking Speeds

2009 MUTCD:

- 7 sec walk, 4 sec option (no change)
- Ped clearance time (flashing hand) calculated at 3.5’/sec curb-to-curb.
- Example: 60’ crosswalk requires 17 sec
 - $7 + 17 = 24$ sec total
- Additional test for walk plus clearance time: Calculate travel time from push button (or 6’ feet from curb if no button) to curb on other side at 3’/sec
 - Example: 6’ + 60’ crosswalk = 66
 - 66’ requires 22 sec
 - 24 sec > 22 sec; passes test.
Guidance for walk plus clearance: Calculate time from pushbutton (or 6’ from curb) to curb on other side at 3’/sec.

60’ crosswalk + 6’ = 66’ total; @ 3’/sec = 22 sec walk plus ped clearance

Note: pushbutton is considered the departure point for older pedestrians and people in wheelchairs.
Old System

1. Ped symbol or WALK
2. Flashing Hand or DON’T WALK
3. Steady Hand or DON’T WALK

1/2 of Americans don’t understand it;

☐ Is there a better system?

* Flashing orange hand/DON’T WALK is ped clearance interval: very counterintuitive

MUTCD Sec. 2B.51 and Section 4E.06
Problem with old system: People not sure if they can start during flashing hand / DON’T WALK
New system: countdown pedestrian signal tells pedestrians how much time remains for crossing
Streetfilms: Guadalajara Countdown
Countdown pedestrian signal research results:
1. Pedestrians understand how it works
2. More people start crossing during clearance phase, but…
3. Fewer people initiate walk late in clearance phase
4. Very few pedestrians in crosswalk in steady don’t walk
5. Drivers don’t take a cue and accelerate to beat the light
What about crash reduction?
Results from San Francisco study are promising:
CMF = 0.75 (CRF = 25%)
2009 MUTCD requirement

- Countdown displays required for new pedestrian signals (except the rare situation where the change interval is 7 seconds or less)

- Why? Significant reductions in pedestrian-vehicle crashes
Discussion:

What are your policies & practices regarding the provision of pedestrian indicators and countdown signals?
Using ITS to Adjust Pedestrian Signal Timing
In this example a high-tech signal was used to help slower pedestrians cross the street with minimal delay to traffic.

A slower crossing speed would delay traffic significantly.
Microwave sensors are aimed at the crosswalks to track peds
Pedestrian clearance is timed @ 3.5 ft/sec

The sensor tracks peds as they cross the street

MUTCD Sec. 4E.06, Paragraph 08
The controller adds 4 seconds crossing time if pedestrian hasn’t finished crossing (8 seconds maximum)

In this case, the walk phase was prolonged in 20% of crossings, reducing unnecessary traffic delay the other 80% of crossings.
Reducing Conflicts between Pedestrians and Turning Vehicles

- At signals, turning movements account for most pedestrian crashes
- Left/right turn ratio is roughly 2:1
- Countermeasures
 - Protected vs. permissive turns
 - No turn on Red
 - Exclusive Pedestrian Phase
 - Leading Pedestrian Interval
Signs: Remind Turning Drivers to Yield to Peds

Older local variations, using MUTCD-approved lettering and symbols:

R10-15 in 2009 MUTCD

Leesburg, FL

Juneau, AK
Orlando, FL

MUTCD Sec. 2B.53, Paragraph 09
Protected Vs. Permissive Left Turns

* CMF = 0.3 (CRF 70%) (all crashes) converting permissive left turns to protected only left turns
Permissive Left Turns

Pedestrians cross at same time as left-turning car; Drivers turning left on a green ball don’t look for pedestrians.
Protected Left Turns

Pedestrians cross after left-turning car, with thru-traffic; Pedestrian and car not in conflict

MUTCD Sec. 4D.19
Pedestrians cross after most left-turning cars (protected phase); Pedestrian and remaining cars are in conflict (permissive phase)
Protected/permissive Left Turns: Solutions

1. Provide protected-permissive phasing by default, but revert to protected-only when pedestrian button is pushed or based on time of day

2. Flashing Yellow Arrow (details on the next slide)
Flashing left yellow arrow during steady green ball warns drivers: yield to pedestrians and oncoming vehicles.
Discussion

- Do you use protected left turns to protect pedestrians from turning vehicles?
- Do you use protected/permissive phasing?
- If so, have you considered flashing yellow arrow during the steady green ball?
Restricting Turns on Red

Consider No Turn on Red signs where there is:

- Poor sight distance between vehicles and peds;
- An unusual number of ped conflicts with turns on red (compared to turns on green);
- An exclusive pedestrian phase; or
- A leading pedestrian interval
Restricting Turns on Red:

1. At all times
Restricting Turns on Red

2. When pedestrians are present

Difficult to enforce
Restricting Turns on Red:

3. By time of day

Limits most turns on red
Restricting Turns on Red:

4. Changeable message sign – can be activated when ped pushes button or as set by controller

Note: An on-demand NTOR sign can be used to improve the effectiveness of a Lead Pedestrian Interval
Exclusive Pedestrian Phase (Barnes Dance)

- Popular because all traffic stops and pedestrians can cross in any direction (must ban turns on red)
Pedestrians pay a price in delay:

Pedestrians wait for traffic in one direction
Pedestrians wait for traffic in other direction
Exclusive pedestrian phase increases safety

\((CMF = 0.66; \ CRF=34\%)\)

but decreases efficiency of intersection

Use where there are high ped volumes and many turning vehicles

Reward: pedestrians can cross in any direction
LPI = Lead Pedestrian Interval

LPI gives pedestrians a head start
It’s like a “mini” exclusive phase
Leading Pedestrian Interval
LPI: WALK comes on at least 3 seconds prior to the green signal; pedestrians enter crosswalk before turning vehicles arrive there.
Where do the extra 3-5 seconds come from?

Peds need 30 seconds to cross

Vehicle queue needs less time to clear
Exclusive Ped Phases or LPI and Accessible Ped Signals

- Without APS, pedestrians with vision impairments cross by listening to vehicle movement.
- With an exclusive ped phase or LPI, the walk signal does not coincide with vehicle movement.
- Use APS with LPI or exclusive ped phases.
These peds waited 3 cycles before turning drivers let them cross as legally required. LPI would give them a head start.

CMF = 0.95 (CRF: 5%)
Discussion

- Do you restrict right turns on red where appropriate?
- Do you use Exclusive Pedestrian Phases or LPIs?
Learning Outcomes

You should now be able to:

1. Explain why traffic signals don’t “guarantee” safety; they assign the right of way
2. Identify signal timing techniques that favor pedestrian crossing
3. Identify major conflicts: concurrent turn movements
4. Select protected turns to improve ped safety
Questions?