# SERVICE NEEDS AND GAPS REPORT

Illinois Statewide Public Transportation Plan

AUGUST 2017

# Illinois Statewide Public Transportation Plan TABLE OF CONTENTS

# SERVICE NEEDS AND GAPS REPORT

| I. | Se | ervi | ce Gaps and Needs for Transit                                      | 5  |
|----|----|------|--------------------------------------------------------------------|----|
|    | A. | Int  | roduction                                                          | 5  |
|    | В. | Ρι   | Iblic Transit Demand Methodologies                                 | 5  |
|    |    | 1.   | Program and Non Program Demand Methodologies                       | 6  |
|    |    | 2.   | Program Demand Methodology                                         | 7  |
|    |    | 3.   | Non-Program Demand Methodology                                     | 8  |
|    |    | 4.   | Method to Determine Commuter Route Demand                          | 9  |
|    |    | 5.   | Small Fixed Route Demand Methodology                               | 10 |
|    |    | 6.   | Summary                                                            | 10 |
|    | C. | Es   | timation of Fixed Route/Complimentary ADA Demand                   | 12 |
|    |    | 1.   | Selection of Peer Agencies                                         | 12 |
|    |    | 2.   | Identification of Fixed Route Services with Unmet Projected Demand | 13 |
|    |    | 3.   | Peoria (CityLink)                                                  | 14 |
|    |    | 4.   | Bloomington-Normal (Connect Transit)                               | 14 |
|    |    | 5.   | Rockford (RMTD)                                                    | 15 |
|    |    | 6.   | Madison County (MCT)                                               | 15 |
|    | D. | ld   | entification of New Fixed Route System                             | 15 |
|    | E. | ld   | entification of New Commuter Routes                                | 18 |
|    |    | 1.   | Rockford Region                                                    | 18 |
|    |    | 2.   | Peoria Region                                                      | 20 |
|    |    | 3.   | Aurora Region                                                      | 21 |
|    |    | 4.   | Commuting Possibilities in High-Need, Low-Density Areas            | 22 |

# TABLE OF CONTENTS

| Appendix                                                       | 35 |
|----------------------------------------------------------------|----|
| 2. Longer Term Recommendations                                 | 32 |
| 1. Near-Term Priorities                                        | 32 |
| G. Intercity Demand                                            | 32 |
| 1. Identification of New and Enhanced Demand Response Services | 30 |
| F. Demand Response Service Demand                              | 25 |



# SERVICE GAPS AND NEEDS REPORT

Illinois Statewide Public Transportation Plan

# I. SERVICE GAPS AND NEEDS FOR TRANSIT

# A. Introduction

This supplemental report to the Illinois Statewide Public Transportation Plan identifies the transit need in the state outside of the RTA service area and addresses ways to fulfill demand that is currently unmet. The recommendations in the report are made on a purely analytical basis and this report does not attempt to solve agency funding shortfalls or resource shortages, but acknowledges they are serious and important. Instead, the aim of this report is to provide a more detailed look at where such funding may be lacking.

To estimate "demand" (i.e. number of transit rides needed in a given area) three different approaches were taken: one for demand response/flex route/commuter systems open to the general public, one for "limited" demand response systems, and one for fixed route systems. For the demand response systems, key demographics were used to estimate demand. For fixed route systems, Illinois' 14 systems were compared to peer systems outside of the state. Methodologies employed to estimate demand were based on research developed through the Transit Cooperative Research Program (TCRP).

# **B.** Public Transit Demand Methodologies

The following section lays out the preferred methodologies for calculating transit demand for limited demand response transportation, fixed route, and general demand response/ flex route services throughout the state. These demand methodologies are explained in detail following this section. The table below summarizes the demand methodology used for each type of transit system.

#### Table 1: Transit System Demand Methodologies

| TRANSIT SYSTEM CLASSIFICATION                    | DEMAND METHODOLOGY              |
|--------------------------------------------------|---------------------------------|
| Limited Demand Response                          | Program Demand                  |
| General Demand Response /Flex Route/<br>Commuter | Non-Program and Commuter Demand |
| Non-Urban Fixed Route                            | Small Fixed Route Demand        |
| Urban Fixed Route                                | Small Fixed Route Demand        |
| Complimentary ADA/Paratransit                    | Small Fixed Route Demand        |

The "Program Demand" methodology applies to limited demand response services. This service can encompass subscription trips for clients to a social service agency or demand response service only open to certain populations. This type of service is funded under Section 5310.

The "Non-Program and Commuter Demand" methodology applies to demand response services, flex route services, and commuter services open to the general public and can be funded through Section 5307 or Section 5311.

The "Small Fixed Route Demand" methodology applies to fixed route systems. Fixed route systems can be either urban (funded through Section 5307) or non-urban, i.e. rural (funded through 5311). These types of systems carry the majority of their riders on fixed routes that repeat their routing and schedules on a daily basis and make transfers with each other, producing a network of routes. The same demand methodology is also applicable to complimentary ADA/paratransit needs.

#### 1. Program and Non Program Demand Methodologies<sup>1</sup>

In order to estimate demand for program and non-program demand response services, a modified version of the methodology presented in the Transit Cooperative Research Program (TCRP) Report 3 was used. The first methodology shown below uses the following inputs and formulas to calculate demand reported on a county-wide basis for program (or limited) demand response services and the second computes the demand for non-program demand on a countywide basis for those services open to the general public. To estimate total demand for the county, the results of each methodology are added together and presented as one number. The output of this demand methodology results in a demand estimate expressed in revenue service hours.

<sup>1</sup> Method adapted from Transit Cooperative Research Program (TCRP) Report 3: Workbook for Estimating Demand for Rural Passenger Transportation

#### 2. Program Demand Methodology

Program Demand Inputs<sup>2</sup>:

- Age 16 and above (a,)
- Total Mobility Limited<sup>3</sup>(b<sub>+</sub>)
- Mobility Limited 18 to 64<sup>4</sup> (b<sub>1</sub>)
- Age 16 to 64 (a<sub>2</sub>)

Age 65 and above (a.,) Program Participation Formulas<sup>5</sup>:

- from Developmental Services: Adult:  $P_1 = 2.15 \times (a_1 \div 1000)$
- from Developmental Services: Case Management:  $P_2 = 29.8 \times (b_1 \div 1000)$
- from Group Home (above 2,000 mobility limited in county):  $P_3 = 7.33 + [5.57 \times (b_t \div 1000)]$
- from Mental Health Services (above 2,000 mobility limited in county:  $P_4 = [(45.9 \times (b_t \div 1000)] 36.4$
- from Mental Health Services: Case Management:  $P_5 = 8.4 \times (a_2 \div 1000)$
- from Senior Nutrition:  $P_6 = 30.1 \times (a_3 \div 1000)$

Program Annual Trip Rates (using Low Observed Rate)<sup>6</sup>:

- Developmental Services: Adult: 138.6
- Developmental Services: Case Management: 20
- Group Home (above 2,000 mobility limited in county): 196.2
- Mental Health Services (above 2,000 mobility limited in county): 30
- Mental Health Services: Case Management: 2.4
- from Senior Nutrition: 117.6

#### Program Demand Equation:

 $D = (P_1 \times 138.6) + (P_2 \times 20) + (P_3 \times 196.2) + (P_4 \times 30) + (P_5 \times 2.4) + (P_6 \times 117.6)$ 

<sup>2</sup> All numbers from American Community Survey 2010-2014 5 Year Estimates

<sup>3</sup> Mobility limited considered having an independent living difficulty

<sup>4</sup> Mobility limited considered having an independent living difficulty

<sup>5</sup> Formulas are from TCRP 3

<sup>6</sup> Trip rates are from TCRP 3 p 85

# 3. Non-Program Demand Methodology

For demand response services open to the general public, two methods<sup>7</sup> can be applied to determine non-program demand in either a rural or small urban setting. One method is to compare the system analyzed to peer systems within the state. In using this method, the parameters/ground rules for each comparison would need to be determined in advance, and this method could only be used to project demand in counties where some level of service already exists. Another method, which can be applied to all areas of the state regardless of current levels of service, uses an equation based on an analysis of the 2009 Rural National Transit Database and workshops conducted by that organization<sup>8</sup>. This equation weights three demographic groups who are most likely to use public transit. The second (demographic based) method will be used to compute non-program demand response estimated ridership because of its universal applicability.

#### Non-Program Demand Inputs<sup>9</sup>:

- Persons Age 60+ (a)
- Mobility Limited 18 to 64 (b)
- Persons Residing in Households With No Vehicle Available (c)

#### Formulas:

- Population Age 60+: 2.20 x a
- Mobility Limited Population 18-64<sup>10</sup>: 5.21 x b
- Persons Residing in Households With No Vehicle Available:  $1.52 \times c$

Non-Program Demand Equation:

D=(2.20×a)+(5.21×b)+(1.52×c)

7 TCRP Report 161: Workbook for Estimating Demand for Rural Passenger Transportation(Non-Program Demand Formula)

<sup>8</sup> http://www.ntdprogram.gov/ntdprogram/data.htm (RY2009 Database)

<sup>9</sup> All numbers from American Community Survey 2010-2014 5 Year Estimates

<sup>10</sup> Mobility limited considered having an independent living difficulty

#### 4. Method to Determine Commuter Route Demand<sup>11</sup>

In certain areas of the state there are enough residents traveling in a similar direction from their homes to access a job that there is potential for establishing a commuter transit service option. In order to calculate the need for commuter routes in any part of the state, the "On The Map" function on the US Census Website<sup>12</sup> was used to calculate commuter trips. Once this number was determined, it was plugged into the equation below.<sup>13</sup> A metric of estimated commuters riding public transit could then be established, and a flex commuter route was conceptualized. In order to determine the threshold for establishing a commuter route, a recommended standard is 80% of the capacity of a super medium duty cutaway vehicle (18 out of 22 seats filled) as a guide, with a minimum of seven daily trips made and hourly service from 6:00 AM to 9:00 AM and from 3:00 PM to 6:00 PM. This would serve as the threshold needed to establish a flex route at 125 estimated rides.

#### Commuter Route Inputs:

- Workers Commuting from Rural County to Urban Place (a)
- Distance in Miles from Rural County to Urban Place (b)<sup>14</sup>
- Number of Commuters (c)

Equation to Estimate Commuter Transit Trips Per Day:

D = [0.024 × (0.0000056 × a) - (0.00029 × b)] × c × 2

14

<sup>11</sup> TCRP Report 161: Workbook for Estimating Demand for Rural Passenger Transportation (Peer Review Method)

<sup>12</sup> http://onthemap.ces.census.gov/

<sup>13</sup> Note that this method can only be used if there are less than 10,000 people commuting between a rural county to an urban place

Distance used is from largest community in the county to urban center

## 5. Small Fixed Route Demand Methodology<sup>15</sup>

Since fixed route systems offer a more standardized service than demand response systems, it is possible to compare them with peer systems from other states. The peers are compared based on how much service they provide, both in their density and amount of service. The geographies of the areas are also compared. From this, several ratios are developed that estimate the demand for service.

#### Small Fixed Route Inputs:

- Population of the area served
- Square miles of the area served
- Annual vehicle hours of service provided
- Number of one way trips per year

#### Ratios:

- Trips per Capita
- Trips per Vehicle Mile
- Trips per Vehicle Hour

#### 6. Summary

Table 2 shows how these methodologies will be applied in the various counties in Illinois. For counties with fixed route systems, urban area and rural demand were treated separately; certain counties also showed some commuter demand, and this demand was also treated separately.

15

TCRP Report 161: Workbook for Estimating Demand for Rural Passenger Transportation (Peer Review Method)

|            | Total      | Non-urbanized |            |             |             |          |   |             |                  | Non-urbanized |                 |             |             |          |
|------------|------------|---------------|------------|-------------|-------------|----------|---|-------------|------------------|---------------|-----------------|-------------|-------------|----------|
| County     | Population | population    | Program    | Non-Program | Fixed Route | Commuter |   | County      | Total Population | population    | Program         | Non-Program | Fixed Route | Commuter |
| Adams      | 67,113     | 26,331        | Rural Only | Rural Only  | х           |          |   | Livingston  | 38,476           | 38,476        | х               | х           |             |          |
| Alexander  | 7,821      | 7,821         | х          | х           |             |          | 1 | Logan       | 30,047           | 30,047        | х               | х           |             |          |
| Bond       | 17,571     | 17,571        | х          | х           |             | ×        | 1 | McDonough   | 32,388           | 13,195        | Rural Only      | Rural Only  | х           |          |
| Boone      | 54,005     | 54,005        | х          | х           |             |          | t | McLean      | 172,390          | 40,425        | Rural Only      | Rural Only  | х           |          |
| Brown      | 6,878      | 6,878         | х          | х           |             |          | 1 | Macon       | 109,833          | 34,745        | Rural Only      | Rural Only  | х           |          |
| Bureau     | 34,361     | 34,361        | х          | х           |             |          | t | Macoupin    | 47,229           | 47,229        | X               | x           |             |          |
| Calhoun    | 5,033      | 5.033         | X          | ×           |             |          | 1 | Madison     | 267,937          | 84.091        | Rural Only      | Rural Only  | X           |          |
| Carroll    | 15.027     | 15.027        | х          | х           |             |          | t | Marion      | 38.922           | 38.922        | X               | X           |             |          |
| Cass       | 13,440     | 13.440        | X          | X           |             |          | t | Marshall    | 12,319           | 12.319        | x               | ×           |             |          |
| Champaign  | 204.214    | 79.606        | Rural Only | Rural Only  | X           |          | t | Mason       | 14.309           | 14.309        | x               | ×           |             |          |
| Christian  | 34,415     | 34.415        | X          | X           |             |          | t | Massac      | 15,148           | 15,148        | X               | X           |             |          |
| Clark      | 16.240     | 16.240        | x          | x           |             |          | t | Menard      | 12.658           | 12.658        | x               | ×           |             |          |
| Clay       | 13.675     | 13 675        | X          | ×           |             |          | t | Mercer      | 16.204           | 16 204        | ×               | ×           |             |          |
| Clinton    | 37,952     | 37 952        | X          | X           |             |          | ł | Monroe      | 33.373           | 33 373        | x               | x           |             |          |
| Coles      | 53,655     | 53,655        | X          | x           |             |          | t | Montgomery  | 29 740           | 29 740        | ×               | ×           |             |          |
| Crawford   | 19,626     | 19,635        | X          | X           |             |          | ł | Morgan      | 35 272           | 35 272        | X               | ×           |             |          |
| Cumberland | 10,950     | 10,950        | X          | X           |             |          | 1 | Moultrie    | 14 896           | 14 994        | ×               | ×           |             |          |
| DoKalb     | 104.919    | 10,750        | ×          | ×           |             |          |   | Orla        | 52 792           | E2 792        | ×               | ~           |             |          |
| De Witt    | 16461      | 104,717       | ×          | ×           |             |          | ł | Peoria      | 187 197          | 45 423        | A<br>Rural Only | Rural Only  | Y           |          |
| Douglas    | 19.947     | 10,401        | ×          | ×           |             |          | 1 | Porry       | 22.034           | 22.024        |                 |             | ^           | ×        |
| Edgen      | 19,007     | 17,007        | ~          | ×           |             |          |   | Piett       | 14 552           | 22,034        | ~               | ×           |             | ^        |
| Edgar      | 6,171      | 18,171        | ~          | ×           |             |          |   | Pilce       | 16,332           | 16,552        | ~               | ×           |             |          |
| Edwards    | 0,007      | 6,687         | ×          | ~           |             |          | ł | Pike        | 16,244           | 16,244        | ×               | ~           |             |          |
| Emingham   | 34,280     | 34,280        | X          | X           |             |          | - | Pope        | 4,362            | 4,362         | X               | X           |             |          |
| Fayette    | 22,041     | 22,041        | X          | X           |             |          | + | Pulaski     | 5,967            | 5,967         | X               | X           |             |          |
| Ford       | 13,906     | 13,906        | X          | X           |             |          | 1 | Putnam      | 5,895            | 5,895         | X               | X           |             |          |
| Franklin   | 39,774     | 39,774        | X          | X           |             |          | ł | Randolph    | 33,091           | 33,091        | X               | X           |             |          |
| Fulton     | 36,616     | 36,616        | X          | X           |             |          |   | Richland    | 16,144           | 16,144        | X               | ×           |             |          |
| Gallatin   | 5,439      | 5,439         | X          | X           |             |          | - | Rock Island | 146,964          | 38,573        | Rural Only      | Rural Only  | X           |          |
| Greene     | 13,677     | 13,677        | X          | X           |             |          |   | St. Clair   | 268,415          | 138,729       | Rural Only      | Rural Only  | X           |          |
| Grundy     | 50,173     | 50,173        | X          | X           |             |          | ł | Saline      | 24,876           | 24,876        | X               | X           |             |          |
| Hamilton   | 8,371      | 8,371         | X          | X           |             |          |   | Sangamon    | 198,808          | 77,589        | Rural Only      | Rural Only  | X           |          |
| Hancock    | 18,808     | 18,808        | Х          | Х           |             |          | - | Schuyler    | 7,454            | 7,454         | Х               | Х           |             |          |
| Hardin     | 4,226      | 4,226         | X          | ×           |             |          | 1 | Scott       | 5,260            | 5,260         | ×               | X           |             |          |
| Henderson  | 7,074      | 7,074         | Х          | X           |             |          | ļ | Shelby      | 22,216           | 22,216        | Х               | Х           |             |          |
| Henry      | 50,03 I    | 50,031        | ×          | ×           |             |          | 1 | Stark       | 5,888            | 5,888         | х               | Х           |             |          |
| Iroquois   | 29,272     | 29,272        | Х          | x           |             | Х        | ļ | Stephenson  | 47,053           | 47,053        | х               | Х           |             | Х        |
| Jackson    | 60,125     | 60,125        | X          | x           |             |          |   | Tazewell    | I 35,872         | 78,719        | Rural Only      | Rural Only  | X           | х        |
| Jasper     | 9,658      | 9,658         | х          | х           |             |          | 1 | Union       | 17,620           | 17,620        | х               | Х           |             |          |
| Jefferson  | 38,716     | 38,716        | х          | х           |             |          |   | Vermilion   | 80,773           | 48,290        | Rural Only      | Rural Only  | х           |          |
| Jersey     | 22,751     | 22,751        | х          | x           |             |          |   | Wabash      | 11,730           | 11,730        | х               | х           |             |          |
| Jo Daviess | 22,427     | 22,427        | ×          | x           |             |          |   | Warren      | 17,784           | 17,784        | ×               | х           |             |          |
| Johnson    | 12,650     | 12,650        | х          | x           |             | х        |   | Washington  | 14,527           | 14,527        | х               | х           |             |          |
| Kankakee   | 112,682    | 85,537        | Rural Only | Rural Only  | Х           |          |   | Wayne       | 16,627           | 16,627        | x               | Х           |             |          |
| Kendall    | 118,194    | 118,194       | х          | x           |             | х        |   | White       | 14,549           | 14,549        | х               | х           |             |          |
| Knox       | 52,447     | 20,549        | Rural Only | Rural Only  | х           |          |   | Whiteside   | 57,680           | 57,680        | х               | х           |             |          |
| La Salle   | 112,698    | 112,698       | х          | х           |             |          | Ι | Williamson  | 66,808           | 66,808        | х               | Х           |             |          |
| Lawrence   | 16,726     | 16,726        | х          | х           |             |          |   | Winnebago   | 292,026          | 93,121        | Rural Only      | Rural Only  | х           | х        |
| Lee        | 35,248     | 35,248        | х          | х           |             |          | İ | Woodford    | 38,965           | 38,965        | x               | х           |             |          |

## Table 2: Transit System Demand Methodologies By County

# C. Estimation of Fixed Route/Complimentary ADA Demand

# 1. Selection of Peer Agencies

Illinois currently has 14 downstate fixed route transit systems focused on the public (two systems, Huskie Lines in DeKalb and Saluki Express in Carbondale are wholly funded by universities and are not part of this study). As discussed in Section B, the methodology used to estimate demand for the fixed route systems in downstate Illinois centers on peer comparisons.

Appropriate peer agencies for each fixed route transit agency were identified by using a methodology from TCRP Report 141<sup>16</sup>. This report provides a transit peer ranking system for Section 5307 providers based on five service characteristics and nine urban area characteristics (see Table 3). "Likeness scores" for these factors are determined based on the percentage difference between a potential peer's value and the target agency's value.

| Urban Area Characteristics                | Description                                                                                                                                   | Service Characteristics         | Description                                                                                                                                                     |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Urban Area Population                     | The total population in the<br>urbanized area (i.e., an urban area<br>with population over 50,000) .                                          | Total Vehicle Miles<br>Operated | The total distance traveled annually<br>by revenue service vehicles of a<br>transit system, including both revenue<br>miles and deadhead miles                  |
| Population Growth Rate                    | The percent change in population<br>between the baseline year of 2000<br>and the user-selected data year.                                     | Total Operating Budget          | The reported total spending on<br>operation, including administration,<br>maintenance, and operation of<br>service vehicles, of a transit system                |
| Population Density                        | The total population per square<br>mile in the urbanized area the<br>transit agency resides                                                   | Percent Demand Response         | The percentage of demand response<br>service for an agency, measured<br>based on the number of vehicles<br>operated in maximum service                          |
| State Capital                             | Whether the agency is located in a state capital                                                                                              | Percent Service Purchased       | The percentage of transit service<br>purchased from outside service<br>provider(s), measured based on the<br>number of vehicles operated in<br>maximum service. |
| Percent Population with<br>College Degree | The percentage of population 24<br>years or older with a minimum of<br>a bachelor degree in the urbanized<br>area the transit agency resides. | Service Area Type               | Type of area that transit agency<br>serves (e.g. only central city, central<br>city and suburban, central city and<br>rural, sole provider for an urban area)   |
| Percent Poverty                           | Percent of population with income<br>below the poverty level                                                                                  |                                 |                                                                                                                                                                 |
| Annual Delay (Hours) per<br>Traveler      | Total annual delay hours per<br>traveler as reported in the Urban<br>Mobility Report published by the<br>Texas Transportation Institute       |                                 |                                                                                                                                                                 |
| Freeway Lane-Miles per<br>Capita          | Average freeway lane-miles per<br>resident as reported in the Urban<br>Mobility Report from TTI; used<br>only for large urban areas.          |                                 |                                                                                                                                                                 |
| Distance                                  | The distance in miles between the<br>target and peer systems,<br>measured between the centroid<br>locations of their urbanized areas.         |                                 |                                                                                                                                                                 |

#### Table 3: Peer Agency Factors

An on-line tool for calculating likeness scores can be accessed at http://www.ftis.org/INTDAS/.

<sup>16</sup> 

A score of zero indicates that the peer and target agency values are exactly alike, while a score of one indicates that one agency's value is twice the amount of the other. A total likeness score is calculated from the individual factors. Peer information is shown in the Appendix.

In general, a total likeness score under 0.50 indicates a good peer match, a score between 0.50 and 0.74 represents a satisfactory peer match, and a score between 0.75 and 0.99 represents usable potential comparison that may not in fact be useful. The geographic location of the transit agency was also taken into consideration while choosing appropriate peers.

For non-urban fixed route providers there is not a readily available on-line tool for calculating peers. However, using the same methodology can provide relevant peer agencies in nearby states.

#### 2. Identification of Fixed Route Services with Unmet Projected Demand

Of the 14 Illinois fixed route systems, only four show that they have unmet projected demand. These systems are: Peoria (CityLink), Bloomington (Connect Transit), Rockford (RMTD), and Madison County (MCT). These fixed route systems most likely have unmet demand because they are operating less service hours than would be expected, as compared to their peers. A review of each of these systems, the peers they are being compared to, and the demand not being met (measured in service hours) follows.

Most Illinois fixed route systems are meeting demographically anticipated demand at a substantially higher percentage than their peers from other states. Because the amount of service provided actually exceeds the amount of demand that would be predicted by simple demographics, it can be inferred that a significant number of "choice" riders are being attracted by these agencies. Choice riders are riders who aren't necessarily dependent on public transportation for their travel mode, but choose public transportation as they find it more convenient than driving.



Figure 1: Percentage of Demand Met by Fixed Route Systems<sup>17</sup>

# 3. Peoria (CityLink)

Agencies with the highest "Peer Similarity" scores for CityLink are the transit systems in the Quad Cities (Illinois), Shreveport (LA), Erie (PA), Savannah (GA), and South Bend (IN). CityLink is currently meeting 96% of all demographically anticipated demand. In order to reach 100% demand, it is estimated that CityLink would need to provide approximately 6,000 more service hours annually. A recommendation to extending all routes until 8:00 PM on weekdays would fill this gap.

# 4. Bloomington-Normal (Connect Transit)

Agencies with the highest "Peer Similarity" scores for Connect Transit are the transit systems in Lafayette (IN), Charlottesville (VA), Kenosha (WI), Racine (WI), and Bloomington (IN). Connect Transit is meeting 85% of demographically anticipated demand currently, leading to a deficit of about 19,000 revenue hours.

Connect Transit recently initiated Sunday service to match current Saturday service on all routes, which should help close most of this gap; the rest of the gap could be closed by starting the three highest ridership routes an hour earlier on Saturday.

<sup>17</sup> Demand is considered "Demographically Anticipated Demand"

# 5. Rockford (RMTD)

Agencies with the highest "Peer Similarity" scores for RMTD are the transit systems in Fort Wayne (IN), South Bend (IN), Evansville (IN), Springfield (IL), and Shreveport (LA). RMTD is meeting 77% of expected demand, which translates to a deficit of about 28,000 hours. Implementing the following service expansions would make up the difference:

- Implementing half hour peak weekday service on the 11 routes currently running hourly (or worse) headways all day
- A new commuter route (identified in Section E) between Rockton and Rockford
- Restore hourly service to Belvidere

#### 6. Madison County (MCT)

Madison County's peer systems are other regionally focused systems: Greater Attleboro-Taunton Regional Transit Authority (several exurban Boston communities); CATA (Lansing, East Lansing, MI); Pioneer Valley (Springfield, MA region); Metro RTA (Summit County, OH); Jefferson Transit (Jefferson Parish, part of suburban New Orleans, LA). They are meeting just over half (55%) of projected demand, a deficit of 121,000 hours.

This hourly deficit would require extensive system expansion, which could include:

- Running all regional, cross county and shuttle routes at half hour intervals on all days
- Running all shuttle routes on Sunday
- Expanding general demand response service to rural Madison County
- Running limited midday and weekend service on the St. Louis express routes

# D. Identification of New Fixed Route System

Cities that are not part of a larger metropolitan area, that lack a fixed route system and have a combined projected program/non-program demand greater than 48,000 riders can be considered ideal candidates for the initiation of fixed route system service. The average program/non-program demand for five peer cities between 20,000 and 40,000 people with fixed route systems was calculated. The cities were Paducah and Frankfort, Kentucky; Muskogee (Oklahoma); Bluefield-Princeton (West Virginia); and Vicksburg (Mississippi). Examining cities of more than 20,000 residents in Illinois, under this rubric the City of Freeport presents itself particularly as a strong candidate for fixed-route transit service. Freeport has a higher than state average poverty and unemployment rate; introducing a fixed route system will improve mobility for job access for these residents. At present, Freeport has a demand response system which is open to the general public; however, general public demand systems are more useful for lifeline transportation (medical appointments, and essential shopping trips) than for trips requiring regular daily drop-offs and pick-ups (such as for a job).

Using the methodology explained in Section B (*Program and Non Program Demand Methodologies*), a demand estimate for the City of Freeport was developed and is shown in Table 4. The program/non-program demand shown in Freeport is greater than 48,000 riders which, as noted above, is the minimum threshold to start a fixed route system:

| Program                                         | Population | Estimated Participation | Demand |
|-------------------------------------------------|------------|-------------------------|--------|
| Developmental Services: Adult                   | 20,180     | 43                      | 6,013  |
| Developmental Services: Case Mgmt               | 663        | 18                      | 353    |
| Group Home                                      | 1,117      | 14                      | 2,659  |
| Mental Health Services                          | 1,117      | 15                      | 446    |
| Mental Health Services: Case Mgmt               | 15,034     | 126                     | 303    |
| Senior Nutrition                                | 5,146      | 155                     | 18,216 |
| Non-Program                                     |            |                         |        |
| Population Age 60+                              | 6,987      |                         | 15,371 |
| Population Age 18-64 with a Mobility Limitation | 663        |                         | 3,454  |
| Persons Living Households without a Vehicle     | 2,420      |                         | 3,678  |
|                                                 |            | Total Projected Demand  | 50,494 |

Table 4: Freeport Fixed Route Projected Demand

Figure 2 shows a conceptual routing of this new fixed route system.



Figure 2: Conceptual Freeport Fixed Route System

# E. Identification of New Commuter Routes<sup>18</sup>

Commuter routes are defined as buses running on fixed routes on fixed schedules over a distance greater than ten miles with limited stops. Most trips bring residents from suburban areas to nearby urban cores, but some serve demand along a "reverse commute" path as well. Major portions of these routes are non-stop, i.e. express service. To identify new commuter routes, the following analysis was conducted: For those counties with above 2,000 projected daily trips to a nearby urban core, trip origin was ascertained first at the ZIP code level, and then at the community level to determine whether a fixed commuter route would make sense. If ridership from one of these communities to the urban core was projected to be above 125, it was marked in this report as candidate for a potential new commuter route.

#### 1. Rockford Region

In recent years, suburban areas to the north of Rockford have grown in population even as population core city has remained static at best. While the Rockford Mass Transit District (MTD) operates two routes in suburban Machesney Park and Loves Park, the villages of Roscoe and Rockton (population 10,680 and 5,296, respectively) currently only have access to general public demand service, provided by Stateline Mass Transit District. Daily demand for a route connecting Roscoe and Rockton to Rockford is estimated at approximately 150 commuters; a potential commuter, peak hour only service would appear to be both viable and needed.

Once a commuter route is established, further travel within Rockford, Belvidere, Cherry Valley, Loves Park, and Machesney Park could be accomplished via transfers to existing RMTD Routes 20 and 22 at either West Lane Road (IL Route 173) or Alpine Road, and at the East Side Transfer Center to Routes 11, 18, 19, and 24. Figure 3 shows a conceptual routing for this commuter route.

All employment numbers are from 2014 taken from OnTheMap (http://onthemap.ces.census.gov/)



Figure 3: Conceptual Rockford Commuter Route

### 2. Peoria Region

Two communities east of Peoria show high commuter demand: Washington, with a population of about 15,000, and Morton, with a population of 16,525. Washington shows a projected demand of 160 riders to workplaces in East Peoria and Peoria, sufficient for a peak period express route. This could either be a new route, with limited stops all the way into Peoria (as shown in Figure 4), or the current CityLink Route 8 could be extended east from its present terminus at Sunnyland Plaza. Connections to other CityLink routes can be made at Sunnyland Plaza (Route 8) and at the Transit Center in Downtown Peoria.

Morton has sufficient demand in both directions to warrant an all-day route; there are about 150 commuters projected to use to transit to access jobs in and around Morton (large employers in the community include a pumpkin canning factory operated by Nestle; Morton Buildings; Morton Industries; Matcor Metal Fabrication; and a Caterpillar parts warehouse). 180 commuters are projected to use the service in the "traditional" commute manner. Connections to other CityLink routes can be made at the Transit Center in Downtown Peoria.



Figure 4: Conceptual Peoria Commuter Routes

### 3. Aurora Region

There is strong projected demand for a commuter route from the Village of Oswego to the City of Aurora. A previous route operated between Oswego and the Aurora Metra station, but this route focused more on commuters to and from the urban core of Chicago rather than central Aurora. A route designed to connect to the Pace "pulse" at the Aurora Transportation Center would reorient this service to those working in the Aurora–Naperville–Warrenville employment corridor along I-88. If Metra decides to extend service to Oswego, this route will serve as an interim option until that line is completed. Figure 5 shows this conceptual route.



Figure 5: Conceptual Aurora Commuter Route

## 4. Commuting Possibilities in High-Need, Low-Density Areas

There is a great need in the state for connecting counties with high unemployment levels to proximate areas with large employment bases. One of the primary goals for public transportation is to help residents access opportunities to advance their personal and economic prospects, either through education or employment, without necessarily making a cost prohibitive investment in a personal vehicle. Many Illinois counties with high levels of joblessness do not meet the daily ridership threshold set for traditional rural to urban commuter routes (i.e. 125 projected riders per day). However, the need for opportunity is no less acute for these residents who happen to live in areas with lower population densities. Establishing rural intercity flex routes with limited stops in small communities could go a long way in addressing this gap. Services of this type should use minibuses and operate on a limited basis (i.e. not on regular headways).

Counties chosen for discussion below have commuter flows of more than 2,000 a day; have poverty rates above the state average; and are adjacent to counties with more than 24,000 jobs<sup>19</sup>.

The following flex commuter routes were explored and are shown in Figures 6 and 7:

#### 1. Anna to Carbondale

- Connections can be made throughout Carbondale with existing Jackson County MTD Flex Routes
- 28 minute running time (one way)

#### 2. <u>Greenville to Edwardsville</u>

- Connections can be made throughout Madison County, and to St. Louis, at the MCT Edwardsville Station
- *39 minute running time (one way)*

#### 3. <u>Watseka to Kankakee via St Anne</u> and Aroma Park

- Connections could be made in Kankakee with River Valley Metro; perhaps could be through routed with their route to Metra
- 40 minute running time (one way)

#### 4. Vienna to Marion

- 28 minute running time (one direction). This route could possibly be through routed with existing RIDES intercity route to Carbondale.
- 5. <u>Pinckneyville to Murphysboro and</u> <u>Carbondale</u>
  - Connections can be made throughout Carbondale with existing Jackson County MTD Flex Routes
  - *37 minute running time (one way)*

#### 6. Freeport to Rockford

- Connections can be made throughout Rockford with the RMTD.
- *35 minute running time (one way)*

<sup>19</sup> Note that smaller populated counties like Alexander and Union were not deemed to have a population threshold to make a commuter route worthwhile. Also, although Pittsfield (to Quincy) and Paris (to Danville) have similar demand to the above commuter services, their running time (over 45 minutes) would not likely attract any regular riders.



Figure 6: Conceptual Other Commuter Routes: North



Figure 7: Conceptual Other Commuter Routes: South

# F. Demand Response Service Demand

As stated previously, demand response services can be roughly divided into general demand response/flex route service (represented by non-program demand) and limited demand response service (represented by program demand). For the purposes of this section, those demand projections are added together, with the assumption that a hypothetical flex route/demand response service could serve both types of demand, either independently or in tandem with social service agencies.

Figures 8 and 9 and Tables 5 and 6 identify the projected demand for both program and non-program trips in the non-urbanized parts of all Illinois counties. Adams, Champaign, Cook, Macon, Madison, McLean, McDonough Kankakee, Knox, Peoria, Rock Island, Sangamon, St Clair, Vermillion, and Winnebago Counties are counties that have urbanized areas with fixed route systems; demand for these urbanized areas is addressed in Section C. Figure 3 organizes overall demand projections into the 11 existing HSTP regions. Table 5 provides estimated demand for years 2015 and 2025. Note that these demand numbers are meant to apply to demand response services only and not to fixed route or commuter services which were addressed in previous sections.

Based on the methodologies used and described in Section B, the total amount of demand response need in the downstate HSTP regions is estimated at 5.2 million demand response rides per year. Since 2.9 million rides were provided last year by the current human service transportation providers, it is estimated that almost 45% of demand was not met. This estimated demand is expected to remain relatively flat between now and 2025 due to low expected population growth in downstate Illinois. In general, the amount of demand met varies throughout the state but it appears that regions that include one or more urbanized areas have more difficulty meeting estimated demand than those which are mainly rural.



Figure 8: Projected Demand Met by HSTP Region

| County     | 2015    | 2025    | Difference | County      | 2015    | 2025    | Difference |
|------------|---------|---------|------------|-------------|---------|---------|------------|
| Adams      | 43.128  | 41.079  | -2.049     | Livingston  | 64.135  | 66.002  | 1.867      |
| Alexander  | 18,248  | 17.049  | -1.199     | Logan       | 48.070  | 48,700  | 630        |
| Bond       | 30.082  | 31.996  | 1.914      | McDonough   | 24.682  | 26.341  | 1.659      |
| Boone      | 70.765  | 85.585  | 14.820     | McLean      | 57.366  | 65.840  | 8.474      |
| Brown      | 10.331  | 11.783  | 1.452      | Macon       | 55.035  | 51.674  | -3.361     |
| Bureau     | 63.588  | 61.336  | -2.252     | Macoupin    | 86.066  | 82.300  | -3.767     |
| Calhoun    | 11.000  | 10.613  | -387       | Madison     | 142,704 | 145,394 | 2.690      |
| Carroll    | 30.179  | 27.315  | -2.864     | Marion      | 72.828  | 67.890  | -4.938     |
| Cass       | 21.418  | 20.301  | -1.117     | Marshall    | 23.374  | 21.989  | -1.385     |
| Champaign  | 108.224 | 119.571 | 11.347     | Mason       | 28.224  | 23.815  | -4.408     |
| Christian  | 62.932  | 59.147  | -3.785     | Massac      | 31.145  | 31.742  | 596        |
| Clark      | 27.412  | 25.278  | -2.134     | Menard      | 21.039  | 21.462  | 424        |
| Clay       | 25.475  | 24.085  | -1.390     | Mercer      | 29.046  | 28.057  | -989       |
| Clinton    | 58.460  | 60.275  | 1.815      | Monroe      | 48.265  | 55.034  | 6.768      |
| Coles      | 86,929  | 94,625  | 7,696      | Montgomery  | 48,634  | 47,936  | -698       |
| Crawford   | 34.896  | 33.582  | -1.314     | Morgan      | 62.386  | 62.142  | -244       |
| Cumberland | 20.721  | 20.191  | -530       | Moultrie    | 26.344  | 26.008  | -336       |
| DeKalb     | 130.843 | 158.289 | 27.446     | Ogle        | 83.291  | 86.534  | 3.243      |
| De Witt    | 27.851  | 26.217  | -1.634     | Peoria      | 145.899 | 142.372 | -3.528     |
| Douglas    | 32.699  | 32.439  | -260       | Perry       | 38.021  | 38.929  | 908        |
| Edgar      | 33.702  | 29.931  | -3.771     | Piatt       | 26.485  | 25.602  | -883       |
| Edwards    | 13.326  | 12.453  | -873       | Pike        | 30,944  | 29,144  | -1.800     |
| Effingham  | 52.536  | 50.849  | -1.687     | Pope        | 11.248  | 11.125  | -124       |
| Fayette    | 37.659  | 39.519  | 1.861      | Pulaski     | 13.737  | 11.692  | -2.044     |
| Ford       | 25.806  | 24.577  | -1.228     | Putnam      | 10.966  | 11.119  | 153        |
| Franklin   | 83,141  | 79,345  | -3.796     | Randolph    | 57.305  | 55.577  | -1.728     |
| Fulton     | 66.845  | 64.298  | -2.547     | Richland    | 32.108  | 28.934  | -3.174     |
| Gallatin   | 12.339  | 10.549  | -1.790     | Rock Island | 64.177  | 61.711  | -2.466     |
| Greene     | 24.558  | 22.317  | -2.241     | St. Clair   | 213.180 | 211.776 | -1.403     |
| Grundy     | 69,605  | 81,773  | 12,168     | Saline      | 54,362  | 50,918  | -3,444     |
| Hamilton   | 16.971  | 16.859  | -112       | Sangamon    | 111.093 | 115.779 | 4.686      |
| Hancock    | 35,183  | 31,013  | -4,170     | Schuyler    | 14,737  | 13,922  | -815       |
| Hardin     | 10.980  | 9.774   | -1.206     | Scott       | 10.498  | 10.123  | -375       |
| Henderson  | 14,926  | 13,769  | -1,156     | Shelby      | 42,175  | 40,091  | -2,084     |
| Henry      | 88,645  | 83,718  | -4,927     | Stark       | 12,758  | 11,785  | -973       |
| Iroquois   | 53,955  | 49,428  | -4,527     | Stephenson  | 90,336  | 87,525  | -2,811     |
| Jackson    | 92,377  | 96,515  | 4,138      | Tazewell    | 114,244 | 114,719 | 474        |
| Jasper     | 17,826  | 15,327  | -2,499     | Union       | 36,997  | 35,968  | -1,029     |
| Jefferson  | 71,568  | 72,705  | 1,137      | Vermilion   | 82,149  | 77,743  | -4,406     |
| Jersey     | 37,029  | 38,875  | 1,846      | Wabash      | 21,989  | 20,557  | -1,432     |
| Jo Daviess | 45,395  | 44,136  | -1,259     | Warren      | 30,101  | 28,891  | -1,210     |
| Johnson    | 23,786  | 26,116  | 2,330      | Washington  | 25,725  | 25,058  | -668       |
| Kankakee   | 143,064 | 151,178 | 8,114      | Wayne       | 31,324  | 29,086  | -2,238     |
| Kendall    | 108,336 | 143,162 | 34,827     | White       | 29,271  | 25,863  | -3,408     |
| Knox       | 36,196  | 34,044  | -2,152     | Whiteside   | 104,301 | 97,506  | -6,795     |
| La Salle   | 191,154 | 190,028 | -1,126     | Williamson  | 121,957 | 126,407 | 4,451      |
| Lawrence   | 26,729  | 26,156  | -572       | Winnebago   | 246,421 | 258,287 | 11,866     |
| Lee        | 59,715  | 61,191  | 1,476      | Woodford    | 56,635  | 60,116  | 3,481      |

## Table 5: Demand by County: Projected Change From 2015-2025

## Table 6: Projected Demand Met by County

|                       | Current    | Current    | Percent of Current            | 2025          | Percent of Future            |                   | Current   | Current   | Percent of Current | 2025        | Percent of Future |
|-----------------------|------------|------------|-------------------------------|---------------|------------------------------|-------------------|-----------|-----------|--------------------|-------------|-------------------|
| County                | Demand     | Ridership  | Demand Met                    | Demand        | Demand Met                   | County            | Demand    | Ridership | Demand Met         | Demand      | Demand Met        |
| Adams                 | 43,128     | 0          | 0%                            | 41,079        | 0%                           | Livingston        | 64,135    | 18,560    | 29%                | 66,002      | 28%               |
| Alexander             | 18,248     | 29,164     | 100%                          | 17,049        | 100%                         | Logan             | 48,070    | 20,027    | 42%                | 48,700      | 41%               |
| Bond                  | 30,082     | 35,611     | 100%                          | 31,996        | 100%                         | McDonough         | 24,682    | 49,029    | 100%               | 26,341      | 100%              |
| Boone                 | 70,765     | 27,825     | 39%                           | 85,585        | 33%                          | McLean            | 57,366    | 124,497   | 100%               | 65,840      | 100%              |
| Brown                 | 10,331     | 20,108     | 100%                          | 11,783        | 100%                         | Macon             | 55,035    | 7,659     | 14%                | 51,674      | 15%               |
| Bureau                | 63,588     | 63,816     | 100%                          | 61,336        | 100%                         | Macoupin          | 86,066    | 40,311    | 47%                | 82,300      | . 49%             |
| ∠€alhoun <sup>h</sup> | ugnug1,666 | rows are a | vnere all proj <del>o</del> g | പെ പുള്ളുള്ളു | a is being m <del>gi</del> ; | ppracting tages a | PO¥42,764 | l% per6   | ent rounded agy    | n tq.45,394 | number 0%         |
| Carroll               | 30,179     | 1,578      | 5%                            | 27,315        | 6%                           | Marion            | 72,828    | 10,971    | 15%                | 67,890      | 16%               |
| Cass                  | 21,418     | 19,039     | 89%                           | 20,301        | 94%                          | Marshall          | 23,374    | 4,183     | 18%                | 21,989      | 19%               |
| Champaign             | 108,224    | 16,891     | 16%                           | 119,571       | 14%                          | Mason             | 28,224    | 1,761     | 6%                 | 23,815      | 7%                |
| Christian             | 62,932     | 0          | 0%                            | 59,147        | 0%                           | Massac            | 31,145    | 36,616    | 100%               | 31,742      | 100%              |
| Clark                 | 27,412     | 6,531      | 24%                           | 25,278        | 26%                          | Menard            | 21,039    | 0         | 0%                 | 21,462      | 0%                |
| Clay                  | 25,475     | 6,166      | 24%                           | 24,085        | 26%                          | Mercer            | 29,046    | 4,425     | 15%                | 28,057      | 16%               |
| Clinton               | 58,460     | 104,199    | 100%                          | 60,275        | 100%                         | Monroe            | 48,265    | 13,405    | 28%                | 55,034      | 24%               |
| Coles                 | 86,929     | 52,534     | 60%                           | 94,625        | 56%                          | Montgomery        | 48,634    | 10,802    | 22%                | 47,936      | 23%               |
| Crawford              | 34,896     | 39,398     | 100%                          | 33,582        | 100%                         | Morgan            | 62,386    | 108,814   | 100%               | 62,142      | 100%              |
| Cumberland            | 20,721     | 10,678     | 52%                           | 20,191        | 53%                          | Moultrie          | 26,344    | 15,432    | 59%                | 26,008      | 59%               |
| DeKalb                | 130,843    | 50,008     | 38%                           | 158,289       | 32%                          | Ogle              | 83,291    | 9,829     | 12%                | 86,534      | 11%               |
| De Witt               | 27,851     | 21,685     | 78%                           | 26,217        | 83%                          | Peoria            | 145,899   | 26,123    | 18%                | 142,372     | 18%               |
| Douglas               | 32,699     | 7,465      | 23%                           | 32,439        | 23%                          | Perry             | 38,021    | 52,901    | 100%               | 38,929      | 100%              |
| Edgar                 | 33,702     | 35,615     | 100%                          | 29,931        | 100%                         | Piatt             | 26,485    | 43,851    | 100%               | 25,602      | 100%              |
| Edwards               | 13,326     | 3,552      | 27%                           | 12,453        | 29%                          | Pike              | 30,944    | 19,821    | 64%                | 29,144      | 68%               |
| Effingham             | 52,536     | 37,020     | 70%                           | 50,849        | 73%                          | Роре              | 11,248    | 17,173    | 100%               | 11,125      | 100%              |
| Fayette               | 37,659     | 5,865      | 16%                           | 39,519        | 15%                          | Pulaski           | 13,737    | 23,616    | 100%               | 11,692      | 100%              |
| Ford                  | 25,806     | 7,395      | 29%                           | 24,577        | 30%                          | Putnam            | 10,966    | 3,008     | 27%                | 11,119      | 27%               |
| Franklin              | 83,141     | 208,496    | 100%                          | 79,345        | 100%                         | Randolph          | 57,305    | 19,735    | 34%                | 55,577      | 36%               |
| Fulton                | 66,845     | 27,217     | 41%                           | 64,298        | 42%                          | Richland          | 32,108    | 37,012    | 100%               | 28,934      | 100%              |
| Gallatin              | 12,339     | 20,761     | 100%                          | 10,549        | 100%                         | Rock Island       | 64,177    | 15,350    | 24%                | 61,711      | 25%               |
| Greene                | 24,558     | 0          | 0%                            | 22,317        | 0%                           | St. Clair         | 213,180   | 0         | 0%                 | 211,776     | 0%                |
| Grundy                | 69,605     | 11,051     | 16%                           | 81,773        | 14%                          | Saline            | 54,362    | 100,165   | 100%               | 50,918      | 100%              |
| Hamilton              | 16,971     | 21,623     | 100%                          | 16,859        | 100%                         | Sangamon          | 111,093   | 0         | 0%                 | 115,779     | 0%                |
| Hancock               | 35,183     | 13,438     | 38%                           | 31,013        | 43%                          | Schuyler          | 14,737    | 2,946     | 20%                | 13,922      | 21%               |
| Hardin                | 10,980     | 21,623     | 100%                          | 9,774         | 100%                         | Scott             | 10,498    | 1,272     | 12%                | 10,123      | 13%               |
| Henderson             | 14,926     | 0          | 0%                            | 13,769        | 0%                           | Shelby            | 42,175    | 21,131    | 50%                | 40,091      | 53%               |
| Henry                 | 88,645     | 37,952     | 43%                           | 83,718        | 45%                          | Stark             | 12,758    | 1,949     | 15%                | 11,785      | 17%               |
| Iroquois              | 53,955     | 55,433     | 100%                          | 49,428        | 100%                         | Stephenson        | 90,336    | 39,550    | 44%                | 87,525      | 45%               |
| Jackson               | 92,377     | 56,729     | 61%                           | 96,515        | 59%                          | Tazewell          | 114,244   | 35,371    | 31%                | 114,719     | 31%               |
| Jasper                | 17,826     | 5,637      | 32%                           | 15,327        | 37%                          | Union             | 36,997    | 37,101    | 100%               | 35,968      | 100%              |
| Jefferson             | 71,568     | 117,081    | 100%                          | 72,705        | 100%                         | Vermilion         | 82,149    | 50,062    | 61%                | 77,743      | 64%               |
| Jersey                | 37,029     | 0          | 0%                            | 38,875        | 0%                           | Wabash            | 21,989    | 20,731    | 94%                | 20,557      | 100%              |
| Jo Daviess            | 45,395     | 39,825     | 88%                           | 44,136        | 90%                          | Warren            | 30,101    | 56,729    | 100%               | 28,891      | 100%              |
| Johnson               | 23,786     | 22,964     | 97%                           | 26,116        | 88%                          | Washington        | 25,725    | 40,283    | 100%               | 25,058      | 100%              |
| Kankakee              | 143,064    | 32,823     | 23%                           | 151,178       | 22%                          | Wayne             | 31,324    | 72,813    | 100%               | 29,086      | 100%              |
| Kendall               | 108,336    | 26,000     | 24%                           | 143,162       | 18%                          | White             | 29,271    | 22,701    | 78%                | 25,863      | 88%               |
| Knox                  | 36,196     | 0          | 0%                            | 34,044        | 0%                           | Whiteside         | 104,301   | 45,504    | 44%                | 97,506      | 47%               |
| La Salle              | 191,154    | 47,943     | 25%                           | 190,028       | 25%                          | Williamson        | 121,957   | 177,224   | 100%               | 126,407     | 100%              |
| Lawrence              | 26,729     | 23,361     | 87%                           | 26,156        | 89%                          | Winnebago         | 246,421   | 9,748     | 4%                 | 258,287     | 4%                |
| Lee                   | 59,715     | 47,470     | 79%                           | 61,191        | 78%                          | Woodford          | 56,635    | 13,232    | 23%                | 60,116      | 22%               |



Figure 9: Illinois Counties with All Projected Demand Met

## 1. Identification of New and Enhanced Demand Response Services

For counties that show between 1,000 and 2,000 daily commute trips between them, it is recommended that a scheduled demand response trip be instituted. These trips can accommodate subscribed riders for work trips, medical appointments, and for social visits. The trips would not have a specific route; rather, they would spend a period of time picking up riders around the origin county, and then drop them off in the largest community or urban area in an adjacent county.

Table 7 shows the (origin) counties recommended for such a service.

| County    | Destination | Connections                                |  |  |
|-----------|-------------|--------------------------------------------|--|--|
| Christian | Springfield | SMTD Transfer Center (SMTD)                |  |  |
|           | Rockford    | Downtown Transit Center (RMTD)             |  |  |
| DeKalb    | Elgin       | Elgin Transportation Center (Pace, Metra)  |  |  |
|           | Aurora      | Aurora Transportation Center (Pace, Metra) |  |  |
| Fulton    | Peoria      | CityLink Transfer Center (CityLink)        |  |  |
| Kendall   | Joliet      | Joliet Union Station (Pace, Metra)         |  |  |
| Logan     | Springfield | SMTD Transfer Center (SMTD)                |  |  |
| Morgan    | Springfield | SMTD Transfer Center (SMTD)                |  |  |
| Whiteside | Clinton, IA | Central Transfer Point (MTA)               |  |  |
| Woodford  | Peoria      | CityLink Transfer Center (CityLink)        |  |  |
| woouloru  | Bloomington | Uptown Normal (Connect Transit, Amtrak)    |  |  |

#### Table 7: Proposed Scheduled Demand Response Trips by County

Also, in order to meet some of this demand, there were some recommended fixed route and commuter bus solutions mentioned in Section F. For Stephenson County, it is expected that by implementing a City of Freeport fixed route system, most if not all of the unmet demand in the county could be met. In addition, unmet Tazewell County demand could be satisfied by the two commuter bus routes proposed for the Peoria metropolitan area.

In addition, general public demand response service should be established in the 11 counties that do not currently have it (shown in Figure 10), either by extending services from a nearby provider, or establishing a new provider. The counties that have no public transit service (as of 2015) are Calhoun, Greene, Henderson, Jersey, and Menard counties. Adams, Knox, Madison, Sangamon, St. Clair, and Winnebago are counties with fixed route and paratransit service, but have gaps (large rural segments of the counties with no general public demand response service). When establishing general public demand response service span of at least 12 hours, with service operating until at least 5:00 PM. It is also recommended that a minimum service area size should be established for all general public demand response transit providers. Best practices indicate that 4,500 square miles is a good threshold for service area, and/or a minimum population of 150,000. Implementing service areas of this size will also reduce the need to make interagency transfers or to run trips out of the service area to access medical appointments, educational or vocational opportunities, and social service agency visits.

Having a general public demand response service area meet these minimum thresholds will also enable the agency to access a large enough base of potential service contracts for local match, and allow the agency to be more cost effective when purchasing vehicles or technology products.



Figure 10: Counties Without Rural Transit Available to the General Public

# G. Intercity Demand

#### 1. Near-Term Priorities

In order to meet future intercity travel demand, a proper foundation must be established. The following are some near-term solutions that may help achieve this:

- The Illinois Bus Network website should be updated and expanded to include regional maps and online timetables. Intercity operators should be included in a GTFS feed registry to facilitate inclusion of independently-developed trip planning applications and all feeds should be submitted to Google to make statewide trip planning via common consumer technology (i.e., computers, smart phones, etc.).
- The process of establishing multimodal transit centers, which make transfers between carriers feasible, should continue; intercity carriers should be encouraged to relocate to existing transit centers in Rockford, Decatur, and Danville (new facility under construction). New transit centers, consolidated with rail passenger stations should be constructed in Springfield (to be built in conjunction with relocation of the passenger rail route through downtown to the 10th Street corridor) and in Quincy (to replace one on the outskirts of town). This latter transit center was rejected locally in 2014
- Kankakee and Galesburg should consider relocation their current central on-street terminals with transit centers at the rail passenger stations.

#### 2. Longer Term Recommendations

The Chicago to Springfield portion of Chicago to St. Louis rail route should be doubletracked, allowing nine daily round trips in this segment. Double-tracking of the existing Union Pacific route is not recommended as the proposed high speed route will need to be a dedicated passenger-only line. A shorter route, with the potential for a station more centrally-located in Madison County (Edwardsville is a good candidate) should be the focus for future investment. A spur passenger line off of this track should be extended to Peoria, from Normal. Some trains could terminate in Peoria rather than St. Louis. Refer to Figure 11.

For shorter routes, a full Chicago—Rockford—Dubuque rail route should begin operations, with four daily round trips to Rockford, and two of these trips operating through to/from Dubuque. The Chicago—Quad Cities route, recently approved for state funding, should run four round trips daily.

It is assumed that with the services described above in place there would no longer be a significant market for the for-profit operators of bus, air, or airport bus service between Chicago and Champaign, Springfield, Normal, Peoria, or Rockford.

Regional commuter rail should be expanded beyond the current Metra statutory area (Cook, Lake, Kane, McHenry, DuPage, and Will Counties). The following routes are recommended:

- Rockford, taking the form of either an extension of some St. Louis or Champaign trains beyond O'Hare or an extension of some of the Metra service that now terminates in Elgin.
- Ottawa and LaSalle/Peru, following the long range recommendations of the recentlycompleted Illinois Valley Study for four peak period trips (eastbound in the morning, westbound in the evening, probably as an extension of existing Metra Rock Island District trains).
- Oswego and Plano (supplementing the existing, and planned, Amtrak trips) probably also as extension of peak period Metra BNSF commuter rail trips.

Any intercity bus routes in the future that do not parallel rail service should offer, at least, two trips per day in each direction.



Figure 11: Proposed Intercity Rail Service

# SERVICE GAPS AND NEEDS REPORT

Illinois Statewide Public Transportation Plan

\_\_\_\_\_

**APPENDIX** 

#### Input Data from Peer Transit Systems

| •                                                                |                            |             |             |             |             |
|------------------------------------------------------------------|----------------------------|-------------|-------------|-------------|-------------|
| Name of Peer System                                              | Quad Cities<br>(MetroLink) | Shreveport  | Erie        | Savannah    | South Bend  |
| Population of Area                                               | 268,624                    | 275,814     | 192,204     | 207,917     | 271,689     |
| Size of Area Served (Square<br>Miles)                            | 46                         | 185         | 82          | 165         | 161         |
| Annual Vehicle-Miles of Service<br>Provided                      | 2,451,868                  | 2,826,947   | 2,910,950   | 3,176,053   | 1,526,683   |
| Annual Vehicle-Hours of Service<br>Provided                      | 170,588                    | 191,955     | 249,174     | 250,329     | 112,600     |
| Service Type (Fixed Route, Route-<br>Deviation, Demand-Response) | Fixed Route                | Fixed Route | Fixed Route | Fixed Route | Fixed Route |
| Number of One-Way Trips Served<br>per Year                       | 3,571,142                  | 3,339,458   | 3,692,041   | 4,391,966   | 2,296,904   |

| Results of Peer Data Comparison |                        |            | Annual Vehicle-  | Annual vehicles  | Average   | Current   |            |              |
|---------------------------------|------------------------|------------|------------------|------------------|-----------|-----------|------------|--------------|
| Results of Feel Data Comp       | anson                  | Population | miles            | hours            | Demand    | Ridership | Difference | Hours Needed |
| Input Data                      | for CityLink:          | 244,009    | 2,733,844        | 168,627          |           |           |            |              |
|                                 | Observed Trip<br>Rates | Dema       | nd Estimate Base | ed On:           |           |           |            |              |
|                                 |                        |            | Annual Vehicle-  | Annual vehicles- |           |           |            |              |
| Peer Values                     |                        | Population | miles            | hours            |           |           |            |              |
| Trips per Capita                |                        |            | _                |                  |           |           |            |              |
| Maximum                         | 21.1                   | 5,148,590  |                  |                  |           |           |            |              |
| Average                         | 14.8                   | 3,611,333  |                  |                  |           |           |            |              |
| Median                          | 13.3                   | 3,245,320  |                  |                  |           |           |            |              |
| Minimum                         | 8.5                    | 2,074,077  |                  |                  |           |           |            |              |
| Trips per Vehicle-Mile          |                        |            |                  |                  |           |           |            |              |
| Maximum                         | 1.5                    |            | 4,100,766        |                  |           |           |            |              |
| Average                         | 1.4                    |            | 3,827,382        |                  |           |           |            |              |
| Median                          | 1.4                    |            | 3,827,382        |                  |           |           |            |              |
| Minimum                         | 1.2                    |            | 3,280,613        |                  |           |           |            |              |
| Trips per Vehicle-Hour          |                        |            |                  |                  |           |           |            |              |
| Maximum                         | 20.9                   |            |                  | 3,524,304        |           |           |            |              |
| Average                         | 18.2                   |            |                  | 3,069,011        |           |           |            |              |
| Median                          | 17.5                   |            |                  | 2,950,973        |           |           |            |              |
| Minimum                         | 14.8                   |            |                  | 2,495,680        |           |           |            |              |
| Values expected for my system   |                        |            |                  |                  |           |           |            |              |
| Maximum                         |                        | 5,148,590  | 4,100,766        | 3,524,304.0      |           |           |            |              |
| Average                         |                        | 3,611,333  | 3,827,382        | 3,069,011.0      | 3,502,575 | 3,376,486 | 126,089    | 6,304        |
| Median                          |                        | 3,245,320  | 3,827,382        | 2,950,973.0      |           |           |            |              |
| Minimum                         |                        | 2,074,077  | 3,280,613        | 2,495,680.0      |           |           |            |              |

| Input Data from Peer Trans                                        | it Systems  |             |             |                  |             |
|-------------------------------------------------------------------|-------------|-------------|-------------|------------------|-------------|
| Name of Peer System                                               | Fort Wayne  | South Bend  | Evansville  | Springfield (IL) | Shreveport  |
| Population of Area                                                | 291,314     | 271,689     | 218,749     | 157,591          | 275,814     |
| Size of Area Served (Square<br>Miles)                             | 172         | 161         | 119         | 92               | 185         |
| Annual Vehicle-Miles of Service<br>Provided                       | 1,757,635   | 1,526,683   | 1,585,525   | 1,707,928        | 2,826,947   |
| Annual Vehicle-Hours of Service<br>Provided                       | 126,591     | 112,600     | 113,544     | 133,387          | 191,955     |
| Service Type (Fixed Route, Route-<br>Deviation, Demand-Response)  | Fixed Route | Fixed Route | Fixed Route | Fixed Route      | Fixed Route |
| Number of One-Way Trips Served<br>per Year                        | 2,035,378   | 2,296,904   | 1,926,472   | 1,863,394        | 3,339,458   |
| Degree of Coordination with Other<br>Carriers (Low, Medium, High) |             |             |             |                  |             |

| Results of Peer Data Comparison |                        | Annual Vehicle- Annual vehicles- |                 |                  | Average   | Current   |            |              |
|---------------------------------|------------------------|----------------------------------|-----------------|------------------|-----------|-----------|------------|--------------|
|                                 |                        | Population                       | miles           | hours            | Demand    | Ridership | Difference | Hours Needed |
| Input Data for RMTD:            |                        | 278,959                          | 1,947,549       | 139,388          |           |           |            |              |
|                                 | Observed Trip<br>Rates | Demand Estimate Based On:        |                 |                  |           |           |            |              |
|                                 |                        |                                  | Annual Vehicle- | Annual vehicles- |           |           |            |              |
| Peer Values                     |                        | Population                       | miles           | hours            |           |           |            |              |
| Trips per Capita                |                        |                                  | _               |                  |           |           |            |              |
| Maximum                         | 12.1                   | 3,375,404                        |                 |                  |           |           |            |              |
| Average                         | 9.6                    | 2,678,006                        |                 |                  |           |           |            |              |
| Median                          | 8.8                    | 2,454,839                        |                 |                  |           |           |            |              |
| Minimum                         | 7.0                    | 1,952,713                        |                 |                  |           |           |            |              |
| Trips per Vehicle-Mile          |                        |                                  |                 |                  |           |           |            |              |
| Maximum                         | 1.5                    |                                  | 2,921,324       |                  |           |           |            |              |
| Average                         | 1.2                    |                                  | 2,337,059       |                  |           |           |            |              |
| Median                          | 1.2                    |                                  | 2,337,059       |                  |           |           |            |              |
| Minimum                         | 1.1                    |                                  | 2,142,304       |                  |           |           |            |              |
| Trips per Vehicle-Hour          |                        |                                  |                 |                  |           |           |            |              |
| Maximum                         | 20.4                   |                                  |                 | 2,843,515        |           |           |            |              |
| Average                         | 17.0                   |                                  |                 | 2,369,596        |           |           |            |              |
| Median                          | 17.0                   |                                  |                 | 2,369,596        |           |           |            |              |
| Minimum                         | 14.0                   |                                  |                 | 1,951,432        |           |           |            |              |
| Values expected for my system   |                        |                                  |                 |                  |           |           |            |              |
| Maximum                         |                        | 3,375,404                        | 2,921,324       | 2,843,515.0      |           |           |            |              |
| Average                         |                        | 2,678,006                        | 2,337,059       | 2,369,596.0      | 2,461,554 | 1,914,428 | 547,126    | 27,356       |
| Median                          |                        | 2,454,839                        | 2,337,059       | 2,369,596.0      |           |           |            |              |
| Minimum                         |                        | 1,952,713                        | 2,142,304       | 1,951,432.0      |           |           |            |              |

#### Input Data from Peer Transit Systems

| Name of Peer System                                               | Lafayette   | Charlottesville<br>(JAUNT) | Kenosha     | Racine      | Bloomington (IN) |
|-------------------------------------------------------------------|-------------|----------------------------|-------------|-------------|------------------|
| Population of Area                                                | 138,534     | 91,068                     | 120,142     | 131,012     | 105,345          |
| Size of Area Served (Square Miles)                                | 74          | 35                         | 51          | 49          | 21               |
| Annual Vehicle-Miles of Service<br>Provided                       | 1,873,133   | 1,995,119                  | 1,008,991   | 1,383,937   | 1,138,840        |
| Annual Vehicle-Hours of Service<br>Provided                       | 149,812     | 112,898                    | 78,501      | 97,131      | 107,448          |
| Service Type (Fixed Route, Route-<br>Deviation, Demand-Response)  | Fixed Route | Fixed Route                | Fixed Route | Fixed Route | Fixed Route      |
| Number of One-Way Trips Served<br>per Year                        | 5,458,986   | 314,994                    | 1,319,931   | 1,395,324   | 3,485,063        |
| Degree of Coordination with Other<br>Carriers (Low, Medium, High) |             |                            |             |             |                  |

| Results of Peer Data Comparison |      | Annual Vehicle- Annual vehicles |                 |                  |                | Current   |            |              |
|---------------------------------|------|---------------------------------|-----------------|------------------|----------------|-----------|------------|--------------|
|                                 |      | Population                      | miles           | hours            | Average Demand | Ridership | Difference | Hours Needed |
| Input Data for Connect Transit: |      | 121,236                         | 1,555,991       | 110,399          |                |           |            |              |
| Observed Trip<br>Rates          |      | Demand Estimate Based On:       |                 |                  |                |           |            |              |
|                                 |      |                                 | Annual Vehicle- | Annual vehicles- |                |           |            |              |
| Peer Values                     |      | Population                      | miles           | hours            |                |           |            |              |
| Trips per Capita                |      |                                 | _               |                  |                |           |            |              |
| Maximum                         | 39.4 | 4,776,698                       |                 |                  |                |           |            |              |
| Average                         | 19.5 | 2,364,102                       |                 |                  |                |           |            |              |
| Median                          | 11.0 | 1,333,596                       |                 |                  |                |           |            |              |
| Minimum                         | 3.5  | 424,326                         |                 |                  |                |           |            |              |
| Trips per Vehicle-Mile          |      |                                 |                 | _                |                |           |            |              |
| Maximum                         | 3.1  |                                 | 4,823,572       |                  |                |           |            |              |
| Average                         | 1.7  |                                 | 2,645,185       |                  |                |           |            |              |
| Median                          | 1.3  |                                 | 2,022,788       |                  |                |           |            |              |
| Minimum                         | 0.2  |                                 | 311,198         |                  |                |           |            |              |
| Trips per Vehicle-Hour          |      |                                 |                 |                  |                |           |            |              |
| Maximum                         | 36.4 |                                 |                 | 4,018,524        |                |           |            |              |
| Average                         | 20.6 |                                 |                 | 2,274,219        |                |           |            |              |
| Median                          | 16.8 |                                 |                 | 1,854,703        |                |           |            |              |
| Minimum                         | 2.8  |                                 |                 | 309,117          |                |           |            |              |
| Values expected for my system   |      |                                 |                 |                  |                |           |            |              |
| Maximum                         |      | 4,776,698                       | 4,823,572       | 4,018,524.0      |                |           |            |              |
| Average                         |      | 2,364,102                       | 2,645,185       | 2,274,219.0      | 2,427,835      | 2,067,276 | 360,559.33 | 19,281       |
| Median                          |      | 1,333,596                       | 2,022,788       | 1,854,703.0      |                |           |            |              |
| Minimum                         |      | 424,326                         | 311,198         | 309,117.0        |                |           |            |              |

| Name of Peer System                                              | Greater<br>Attleboro-<br>Taunton<br>Regional Transit<br>Authority<br>(Taunton) | CATA (Lansing) | Pioneer Valley<br>(Springfield,<br>MA) | METRO RTA<br>(Akron) | Jefferson Parish<br>Department of<br>Transit<br>Administration<br>(Gretna) |
|------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------|----------------------------------------|----------------------|----------------------------------------------------------------------------|
| Population of Area                                               | 98,175                                                                         | 287,598        | 551,543                                | 542,899              | 431,019                                                                    |
| Size of Area Served (Square<br>Miles)                            | 72                                                                             | 136            | 302                                    | 420                  | 94                                                                         |
| Annual Vehicle-Miles of Service<br>Provided                      | 3,256,355                                                                      | 5,933,418      | 7,101,709                              | 5,683,623            | 1,809,034                                                                  |
| Annual Vehicle-Hours of Service<br>Provided                      | 200,546                                                                        | 421,720        | 523,133                                | 412,305              | 132,899                                                                    |
| Service Type (Fixed Route, Route-<br>Deviation, Demand-Response) | Fixed Route                                                                    | Fixed Route    | Fixed Route                            | Fixed Route          | Fixed Route                                                                |
| Number of One-Way Trips Served<br>per Year                       | 1,177,036                                                                      | 11,868,880     | 11,750,780                             | 5,427,929            | 2,217,009                                                                  |
| Degree of Coordination with Other                                |                                                                                |                |                                        |                      |                                                                            |
| Carriers (Low, Medium, High)                                     |                                                                                |                |                                        |                      | 1                                                                          |

| Results of Peer Data Comparison |      |                           | Annual          | Annual vehicles  |                | Current   |              |              |
|---------------------------------|------|---------------------------|-----------------|------------------|----------------|-----------|--------------|--------------|
|                                 |      | Population                | Vehicle-miles   | hours            | Average Demand | Ridership | Difference   | Hours Needed |
| Input Data for MCT:             |      | 232,298                   | 5,583,842       | 259,016          |                |           |              |              |
| Observed Trip<br>Rates          |      | Demand Estimate Based On: |                 |                  |                |           |              |              |
|                                 |      |                           | Annual Vehicle- | Annual vehicles- |                |           |              |              |
| Peer Values                     |      | Population                | miles           | hours            |                |           |              |              |
| Trips per Capita                |      |                           | _               |                  |                |           |              |              |
| Maximum                         | 41.3 | 9,593,907                 |                 |                  |                |           |              |              |
| Average                         | 17.9 | 4,158,134                 |                 |                  |                |           |              |              |
| Median                          | 12.0 | 2,787,576                 |                 |                  |                |           |              |              |
| Minimum                         | 5.1  | 1,184,720                 |                 |                  |                |           |              |              |
| Trips per Vehicle-Mile          |      |                           |                 |                  |                |           |              |              |
| Maximum                         | 2.0  |                           | 11,167,684      |                  |                |           |              |              |
| Average                         | 1.2  |                           | 6,700,610       |                  |                |           |              |              |
| Median                          | 1.2  |                           | 6,700,610       |                  |                |           |              |              |
| Minimum                         | 0.4  |                           | 2,233,537       |                  |                |           |              |              |
| Trips per Vehicle-Hour          |      |                           | -               |                  |                |           |              |              |
| Maximum                         | 28.1 |                           |                 | 7,278,350        |                |           |              |              |
| Average                         | 17.3 |                           |                 | 4,480,977        |                |           |              |              |
| Median                          | 16.7 |                           |                 | 4,325,567        |                |           |              |              |
| Minimum                         | 5.9  |                           |                 | 1,528,194        |                |           |              |              |
| Values expected for my system   |      |                           |                 |                  |                |           |              |              |
| Maximum                         |      | 9,593,907                 | 11,167,684      | 7,278,350.0      |                |           |              |              |
| Average                         |      | 4,158,134                 | 6,700,610       | 4,480,977.0      | 5,113,240      | 2,848,662 | 2,264,578.33 | 121,100      |
| Median                          |      | 2,787,576                 | 6,700,610       | 4,325,567.0      |                |           |              |              |
| Minimum                         |      | 1,184,720                 | 2,233,537       | 1,528,194.0      |                |           |              |              |